Annual Report Maryland 319 Nonpoint Source Program State Fiscal Year 2017

January 31, 2018 Revised April 26, 2018 Published and distributed by the

Section §319(h) Nonpoint Source Program Maryland Department of the Environment Water and Science Administration 1800 Washington Boulevard, Baltimore MD 21230

Phone: 410-537-3906 Fax: 410-537-3873

D. Lee Currey, Director Water and Science Administration

Matt Rowe, Assistant Director Water and Science Administration

Dinorah Dalmacy, Program Manager Integrated Water Planning Program

Primary Author: Ken Shanks, Environmental Prog. Mgr.

MDE Contributors: Melissa Chatham Paul Emmart Jen Jaber Allison O'Hanlon Heather Merritt Robin Pellicano Charles Poukish Greg Sandi Angel Valdez

Md. Dept. of Agriculture: Louise Lawrence Md. Dept. of Natural Resources: Anne Haireston-Strang, Renee Karrh

Maryland's Nonpoint Source Program is funded in part by a Section §319(h) Clean Water Act Grant from the U.S. EPA. Although this program is funded partly by U.S. EPA, the contents of this report do not necessarily reflect the opinion or position of EPA.

TABLE OF CONTENTS

Preface / Abbreviations

- I. Mission and Goals of the NPS Program
- II. Executive Summary
- III. Overview
- IV. Major Accomplishments, Successes and Progress
 - A. Statewide NPS Management Program Progress
 - 1. Success Stories
 - 2. National Water Quality Initiative
 - 3. Priority Watersheds for 319(h) Grant Implementation Funding
 - B. Antietam Creek
 - C. Back River
 - D. Casselman River
 - E. Corsica River
 - F. Lower Jones Falls
 - G. Lower Monocacy River
 - H. Middle Gwynns Falls
 - I. Sassafras River
 - J. Upper Choptank River
- V. Areas of Concern/Recommendations/Future Actions

LIST OF TABLES

- 1 Milestones Progress Statewide
- 2 BMP Implementation Statewide Progress SFY17
- 3 Priority Watersheds for 319(h) Grant Implementation Funding
- 4 1994-2017 NPS Implementation Funding
- 5 SFY17 319-Funded Implementation Projects Status
- 6 SFY17 Pollutant Load Reductions in Priority Watersheds
- 7 Antietam Creek Grant Expenditures 2012-SFY17
- 8 Antietam Creek Pollution Load Reduction Progress
- 9 Tidal Back River Goals and Implementation Progress
- 10 Upper Back River Goals and Implementation Progress
- 11 Pollution Load Reduction Progress Tidal and Upper Back River SWAPs
- 12 Corsica River Pollution Load Reduction Progress
- 13 Corsica River Grant Expenditures Summary
- 14 Lower Jones Falls Pollution Load Reduction Progress
- 15 Lower Moncacy River Pollution Load Reduction Progress
- 16 Lower Monocacy River Grant Expenditures Summary
- 17 Middle Gwynns Falls Pollution Load Reduction Progress
- 18 Middle Gwynns Falls Grant Expenditures Summary
- 19 Sassafras River Grant Expenditures Summary
- 20 Sassafras River Pollution Load Reduction Progress
- 21 Upper Choptank River Grant Expenditures Summary
- 22 Upper Choptank River Pollution Load Reduction Progress

LIST OF FIGURES

- 1 Total Nitrogen Sources In Maryland pie chart
- 2 Total Phosphorus Sources In Maryland pie chart
- 3 Baltimore County Herring Run at Overlook Park Stream Restoration construction
- 4 319 Priority Watersheds Eligible for 319(h) Grant Implementation Funding Map
- 5 Antietam Creek Watershed Map
- 6 Little Antietam Creek before construction
- 7 Little Antietam Creek during and after construction
- 8 Back River Watersheds Map
- 9 Casselman River Watershed Map
- 10 Casselman River site of limestone "sand" BMP installed on private property
- 11 Corsica River Watershed Map
- 12 Jones Falls Watershed Map
- 13 Lower Moncacy River Watershed Map
- 14 Middle Gwynns Falls Watershed Map
- 15 Sassarfras River Watershed Map
- 16 Sassarfras River constructing mitigation for gully erosion
- 17 Upper Choptank River Watershed Map

LIST OF APPENDICES

- A. Financial Information
- B. Antietam Creek
- C. Back River
- D. Casselman River
- E. Corsica River
- F. Lower Jones Falls
- G. Lower Monocacy River
- H. Middle Gwynns Falls
- I. Sassafras River
- J. Upper Choptank River
- K. Integrated Report
- L. Milestones
- M. Success Story

Preface

Nonpoint source (NPS) pollution is defined as polluted stormwater runoff associated with rainfall, snowmelt or irrigation water moving over and through the ground. As this water moves, it picks up and carries pollutants with it, such as sediments, nutrients, toxics, and pathogens. These pollutants eventually reach lakes, rivers, wetlands, coastal waters, ground waters and, most of the time in Maryland, the Chesapeake Bay.

NPS pollution is associated with a variety of activities on the land including farming, logging, mining, urban/construction runoff, onsite sewage systems, streambank degradation, shore erosion and others. For example, stormwater flowing off the land carries the nutrients nitrogen and phosphorus into local streams and eventually into the Chesapeake Bay. Under natural conditions, this is beneficial up to a point. However, if excessive nutrients enter a lake or the Chesapeake Bay, and cause nuisance algae blooms, then these nutrients are considered to be pollutants.

The pollution contributed by nonpoint sources is the main reason why many of Maryland's waters are listed as impaired because Water Quality Standards are not being met for designated uses including fishing, swimming, drinking water, shellfish harvesting among others.

Progress in managing NPS pollution in Maryland is presented in this report. It was produced by the Maryland Department of the Environment (MDE) to meet 319(h) Grant conditions and to demonstrate consistency with three essential elements:

- 1. EPA Strategic Plan Goal 2 Protecting America's Waters
- 2. EPA Strategic Plan Objective 2.2 Protect and Restore Watersheds and Aquatic Ecosystems
- 3. Work plan commitments plus time frame (overall progress is reported in this document).

Abbreviations Used	1
319	Clean Water Act, Section 319(h)
AMD	Acid Mine Drainage
ARA	Air and Radiation Administration, MDE
BAT	Best Available Technology
BMP	Best Management Practice
COMAR	Code of Maryland Regulations
DNR	Maryland Department of Natural Resources
EPA	Environmental Protection Agency, United States of America
FFY	Federal Fiscal Year (October 1 thru September 30)
IWPP	Integrated Water Planning Program, WSA, MDE
LMA, MDE LMA	Land and Materials Administration, MDE
MDA	Maryland Department of Agriculture
MDE	Maryland Department of the Environment
MDP	Maryland Department of Planning
MEP	Maximum Extent Practicable
NGO	Non-Government Organization
NPS	Nonpoint Source
RFP	Request for Proposals
SCD	Soil Conservation District
SRA	Sassafras River Association
SRF	State Revolving Fund
SFY	State Fiscal Year (in Maryland, July 1 thru June 30)
SWAP	Small Watershed Area Plan (another name for a watershed-based plan)
SW Conversion	Converting an existing stormwater facility to provide water quality benefits
SW Retrofit	Adding stormwater management to existing development that had none
TMDL	Total Maximum Daily Load
Trust Fund	Maryland Chesapeake and Atlantic Coastal Bays Trust Fund
WIP	Watershed Implementation Plan for the Chesapeake Bay TMDL
WQA	Water Quality Analysis
WRAS	Watershed Restoration Action Strategy (aka watershed-based plan)
WRE	Water Resources Elements (components of a local comprehensive plan)
WSA	Water and Science Administration, MDE
WWTP	Waste Water Treatment Plant (sewage treatment)

I. Mission and Goals of the NPS Program

Maryland's 2015-2019 Nonpoint Source Management Plan (State NPS Plan), generated by the Maryland Department of the Environment (MDE) and partner agencies, was approved by the US Environmental Protection Agency (EPA) in January 2015. The document's vision, mission, goals are shown on the right. The completed document, including posted updates is available on the Internet at http://mde.maryland.gov/programs/Water/319NonPoint Source/Pages/index.aspx

The State NPS Plan is designed to meet requirements of the Federal Clean Water Act Section 319 and to be consistent with Maryland commitments and responsibilities in the Chesapeake Bay Agreement, the Chesapeake TMDL, and Maryland's Chesapeake Bay Watershed Implementation Plan (WIP).

To realize the visions in these documents, the State's NPS programs are designed to: achieve and maintain beneficial uses of water; protect public health, and; improve and protect habitat for living resources. The State programs use a mixture of water quality and/or technology based approaches including regulatory and non-regulatory programs, and programs that provide financial, technical, and educational assistance.

Maryland's 2015-2019 NPS Management Plan

1.A Vision

Ensuring a clean environment and excellent quality of life for Marylanders.

Maryland's vision is to implement dynamic and effective nonpoint source pollution control programs. These programs are designed to achieve and maintain beneficial use of water; improve and protect habitat for living resources; and protect health through a mixture of water quality and/or technology based programs; regulatory and/or non-regulatory programs; and financial, technical, and educational assistance programs. (*Maryland Nonpoint Source Management Plan*, December 1999)

1.B Mission

Maryland's Nonpoint Source Management Program (Program) mission is to protect and restore the quality of Maryland's air, water, and land resources, while fostering smart growth, a thriving and sustainable economy and healthy communities.

1.C Goals

The Program has the following seven broad goals to advance its mission and vision:

- 1. Improving and protecting Maryland's water quality.
- 2. Promoting land redevelopment and community revitalization.
- Ensuring safe and adequate drinking water.
 Reducing Maryland citizen's exposure to
- 4. Reducing Maryland citizen's exposure to hazards.
- 5. Ensuring the safety of fish and shellfish harvested in Maryland.
- 6. Ensuring the air is safe to breathe.
- 7. Providing excellent customer services to achieve environmental protection.

Through program management and financial/technical support, Maryland's Section §319(h) NPS Program plays a role in helping to protect and improve of Maryland's water quality. The NPS Program promotes and funds State and local watershed planning/implementation efforts, water quality monitoring to evaluate progress, governmental partnership/cooperation and education/outreach. Program partners include State agencies, local government (counties, municipalities, Soil Conservation Districts), private landowners and watershed associations.

Consistent with these priorities, selection of NPS implementation projects for 319(h) Grant funding incorporates the following goals:

- GOAL 1 To support meeting Total Maximum Daily Load (TMDL) nonpoint source reduction targets.
- GOAL 2 To significantly contribute to reducing one or more nonpoint source water quality impairments in a water body identified in Maryland's 303(d) list of impaired water bodies leading toward full or partial restoration.
- GOAL 3 To implement projects from EPA-accepted watershed-based plans that will produce measurable nonpoint source pollutant load reduction consistent with Goals 1 and 2.

II. Executive Summary

In accordance with the Federal Clean Water Act Section 319, this report documents the activities and accomplishments by the State of Maryland 319 NPS Program. MDE is the lead agency for administering Section 319, including the 319(h) Grant. MDE is also the lead 319 NPS management agency responsible for coordination of policies, funds, and cooperative agreements with state agencies and local governments. Several other state agencies have key responsibilities, including the Maryland Department of Natural Resources (DNR) and the Maryland Department of Agriculture (MDA). The 319 NPS Program is housed within MDE's Water and Science Administration (WSA) Integrated Water Planning Program.

During the past 28 years, Maryland received about \$59.14 million through the 319(h) Grant to support the Maryland's NPS management program including on-the-ground implementation of best management practices (BMPs).

In 319 priority watersheds, overall reported SFY17 reductions of nitrogen, phosphorus, and sediment are significantly greater than goals in *Maryland's 2015-2019 Nonpoint Source Management Plan* (State Plan). In these watersheds, the majority of this success arises from the State's integrated reporting of BMP implementation for the EPA Chesapeake Bay Program. In the numbers below, cover crops account for the difference between "all reported BMPs" and multi-year BMPs:

Nitrogen SFY17 Reduction (lb/yr):

Goal: 150,000. All reported BMPs: 578,656. Multi-Year BMPs only: 38,585. Phosphorus SFY17 Reduction (lb/yr): Goal: 3,000. All reported BMPs: 6,148. Multi-Year BMPs only: 3,822. Sediment SFY17 Reduction (tons/yr): Goal: 600. All reported BMPs: 3,119. Multi-Year BMPs only: 1,274.

Overall reported funding of NPS implementation in priority watersheds reached \$10.16M from the Federal 319(h) Grant and \$15M from State funding thru the end of SFY17. (excluding match for the 319 Grant)

Two 319-funded projects were completed during SFY17 that reported implementing best management practices. These projects' estimated pollutant load reductions totaled: nitrogen 181.5 lbs/yr, phosphorus 61.7 lbs/year and sediment 797.76 tons/year.

Three Maryland State agencies reported expending over \$62.97 million for nonpoint source programs and implementation during SFY17. (Departments of Agriculture, Environment and Natural Resources only)

Maryland 319 NPS Program SFY17 Annual Report Page 3 of 30

III. Overview

Maryland surface waters flow into three major drainage areas:

- The Chesapeake Bay watershed receives runoff from of Maryland's mid section and encompasses more than 90% of the State. Most 319-funded implementation projects are in this watershed. These projects are mostly designed to reduce nitrogen, phosphorus and sediment pollutant loads.
- Maryland's Coastal Bays receives runoff from Maryland's eastern-most coastal plain in Worcester County. During SFY17, 319-funded implementation was active.
- Maryland's Appalachian area runoff drains thru the Youghiogheny River and Casselman River watersheds toward the Ohio and Mississippi Rivers. In the Casselman River

Figure 1. Total Nitrogen Sources

watershed, the 319(h) Grant continues to help fund acid mine drainage remediation.

Overall, Maryland has over 9,940 miles of non-tidal streams and rivers. These waters and the Chesapeake Bay have provided a rich bounty that been the foundation for much of Maryland's rich heritage and prosperity. The State's water resources continue to provide food and water for its residents, jobs for the economy and a place where people may relax and enjoy the natural environment. Our quality of life,

including drinking water, recreation/tourism, commercial and recreational fishing and wildlife habitats depend on healthy waters supported by healthy watersheds.

However, Maryland's water resources are under stress from a variety of causes -- with nonpoint source pollution being the greatest single factor. The sources of excessive nitrogen and phosphorus in Maryland arise in large part from major land uses as shown in Figures 1 and 2 (Chesapeake Bay Model progress run Phase 5.3.2). The state's waters are increasingly impacted by and remain impaired due largely to nonpoint sources of pollution and related habitat degradation, which are most commonly

due to altered land uses. The lands that are altered from natural conditions contribute various forms of nonpoint point source pollution such as excessive levels of the nutrients nitrogen and phosphorus.

Figure 2. Total Phosphorus Sources in Maryland SFY 2017

The best methods for controlling NPS pollution are commonly called conservation practices or Best Management Practices (BMPs). These BMPs are designed to meet specific needs, like increasing tree cover to capture stormwater, grassed buffers to control sediment and phosphorus that could leave farm fields, or wet stormwater ponds to capture sediment and nutrients in urban runoff. Every year, Maryland reports the cumulative total number of BMPs implemented in the State. The most recent statewide aggregate reporting is summarized in **Appendix – BMP Implementation Progress in Maryland**.

Maryland's NPS management program has responsibilities set forth in the Federal Clean Water Act Section 319. To help meet these responsibilities, the State program has received Federal grant support each year since 1990 and is required to maintain at least a minimum annual level of nonfederal expenditure. A summary that covers the period 1990 thru SFY17 for Maryland is in **Appendix – Financial Information**.

Chapter IV of the Annual Report provides brief summaries of grant-funded NPS Program activities during SFY17 in 319 priority watersheds. More detailed information supporting Chapter IV is in **Appendix – Watersheds**.

Demonstrating improvements in water quality resulting from nonpoint source program implementation and successes in achieving nonpoint source management goals and objectives are important for the program. Each year, at least one success story is submitted to EPA. Maryland's SFY17 success story is based on MDE analysis of monitoring data from Spiker Run in Garrett County. The in-stream data documented that pH levels have significantly improved following implementation of acid mine drainage remediation projects that were partially funded by the 319(h) Grant. (see **Appendix – Success Story**).

Figure 3. Baltimore County Dept. of Environmental Protection and Sustainability hosted staff from EPA Region 3 and MDE at their Herring Run stream restoration project at the County's Overlook Park in September 2017. The photo shows a section of Herring Run that is being stabilized prior to final vegetative stabilization. This area, including the stream bed, banks and floodplain, has been reshaped to create a morenatural, stable system. The project is funded in part by 319(h) Grant FFY2014 funds. (photo by MDE)

IV. Major Accomplishments, Successes and Progress

A. Statewide NPS Management Program Progress

1. Introduction and Overview

This annual report is based in part on the milestones from *Maryland's 2015-2019 Nonpoint Source Management Plan* that was approved by EPA in January 2015. It also provides a summary of implementation progress reporting in 319 priority watersheds (see Figure 3). In addition to local input in 319 priority watershed progress, MDE also uses data reported by Maryland for use in the Chesapeake Bay Model. To gauge progress toward meeting state and local goals, Maryland tracks implementation progress for selected categories of BMPs that have been recognized by the EPA Chesapeake Bay Program and the Chesapeake Bay States.

Maryland's 2015-2019 Nonpoint Source Management Plan includes specific categories of objectives designed to focus effort on reducing and preventing NPS pollution: 1- Regional Coverage, 2- Multiple Scales, 3- Pollutants and Stressors, 4- Pollutant Sources, 5- Types of Waterbodies, 6- Protection and Restoration, 7- Priority Setting, and 8- Program Management and Evaluation. Under these categories are specific objectives with milestones to gage progress. The table below summarizes SFY17 progress for selected milestones.

	Table 1. Milestones Progress Statewide								
Obj. #	Objective Name (abbreviated)	Goal SFY17	Report SFY17						
	Annual nitrogen NPS Loads to Bay	Report Progress	36,763,530						
	Nitrogen: overall reduction in 319 priority watersheds (lb/yr)	150,000	551,056						
3	Annual phosphorus NPS Loads to Bay	Report Progress	2,675,178						
	Phosphorus: overall reduction in 319 priority watersheds (lb/yr)	3,000	9,359						
	Sediment: 319-funded projects annual reductions (tons/yr)	15	1,031.2						
	Sediment: overall reduction in 319 priority watersheds (tons/yr)	600	4,453.7						
	Cover crop acreage	417,000	543,584						
	Nutrient Management Plan acreage (report includes all 3 Tiers	682,247	763,777						
4	Soil Conservation and Water Quality Plan acreage	1,026,000	898,847						
4	Septic system upgrades to remove nitrogren (count)	1,200	1,543						
	Stormwater retrofits (nitrogen reduction lb/yr) (1)	20,000	14,638						
	Local stormwater WLA implementation plans reviewed								
5	5 319 priority watersheds: implement watershed plans Report Progress See section IV.B								
(1) Unde	restimate of actual due to complexity of calculating estimate.								
See App	endix Milestones for a complete listing of milestones and progress for	this state fiscal year.							

Additionally, Maryland also tracks statewide progress by other metrics:

- Many forms of best management practices (BMPs) as listed in the table on next page.
- 319(h) Grant investment in Maryland is summarized in Appendix A, including
 - o Total annual 319(h) Grant awards to Maryland
 - o State of Maryland expenditures for NPS programs (maintenance of effort)
 - o Distribution of 319(h) Grant implementation funding by County
 - Distribution of 319(h) Grant funds for monitoring (water quality, biological)

Table 2 – BMP Implementation Statewide Progress In Maryland State Fiscal Year 2017								
Type of Practice	Statewide Total	Nitrogen Reduction (lb/yr)	Phosphorus Reduction (lb/yr)					
Animal Composters on Ag Lands	35	318	8					
Animal Waste Management Systems-Livestock	902	1,085,856	122,952					
Animal Waste Management Systems-Poultry	730	164,016	18,572					
Cover Crops	543,359	980,366	44,802					
Dry Detention Ponds and Hydro Structures	52,810	19,283	2,387					
Dry Extended Detention Ponds	30,280	44,226	2,737					
Filtering Practices	6,203	18,120	1,682					
Forest Conservation	118,809	1,627	21					
Forest Harvesting Practices	17,103	11,707	183					
Grassed Buffers	52,997	407,324	46,657					
Infiltration Practices	15,638	91,360	6,007					
Nutrient Management Plan Implementation	792,464	1,443,296	211,843					
Retirement Of Highly Erodible Lands	28,928	136,759	1,436					
Riparian Forest Buffers on Ag Lands	23,290	256,149	20,504					
Riparian Forest Buffers on Urban Lands	944	1,114	322					
Runoff Control	1,464	2,138	132					
Septic Connections to Sewers	2,352	17,176	0					
Septic Denirification	12,101	55,665	0					
Soil Conservation Water Quality Plans	898,717	1,023,007	180,185					
Stream Protection w/Fencing	737	10,067	985					
Stream Protection w/o Fencing	64,021	72,875	11,409					
Stream Restoration	336,460	5,745	510					
Tree Planting on Agricultural Lands	28,928	335,872	41,243					
Water Control Structures	3,155	23,703	0					
Wet Ponds	65,044	95,000	13,228					
Wetland Restoration on Ag Lands	14,083	53,703	10,096					

Table footnotes:

1. Data for each BMP represents cumulative totals through June 2016 using CBP Model Phase 5.3.2.

Nutrient load reductions are estimates for each type of practice representing the affect of each BMP acting independently. The nutrient reduction estimates do not account for the potential aggregate affect of multiple BMPs interacting together. For example, an agricultural field may have both cover crops and grassed buffers.
 These tables' values do not include all BMPs implemented. Some BMP reductions are not easily calculated.

4. 2016 Progress incorporated changes in BMP implementation which included decreases in some BMPs from past years.

2. Priority Watersheds for 319(h) Grant Implementation Funding

During SFY17, ten priority watersheds in Maryland are eligible for 319(h) Grant implementation funding. Additionally one watershed plan completed implementation and two watershed plans are being drafted in an effort to seek eligibility. The table below summarizes watershed planning status in each area. The locations of the priority watersheds are mapped on the next page.

	Table 3. Priority Watersheds for 319(h) Grant Implementation Funding							
	Watershed	Plan Name	Plan Date, Status	Plan Lead				
	Back River	Tidal Back River Small Watershed Action Plan	2010 Implementing	-				
		Small Watershed Action Plan	Implementing	Baltimore County				
	Middle	Middle Gwynns Falls	2014	Department of				
	Gwynns Falls	Small Watershed Action Plan	Implementing	Environmental Protection				
	Lower	Lower Jones Falls Watershed	2008	and Sustainability				
	Jones Falls	Small Watershed Action Plan	Implementing					
	Spring Branch	Spring Branch Subwatershed –	2008					
		Small Watershed Action Plan	Completed					
	Antietam	Antietam Creek	2012	Washington County Soil				
~	Creek	Watershed Restoration Plan	Implementing	Conservation District				
3a)	Corsica River	Corsica River Watershed	2004, 2012	Town of Centreville,				
е		Restoration Action Strategy,	Implementing	Queen Anne's County				
<u>a</u>		Corsica River Targeted Initiative						
be		Progress Report: 2005-2011						
ese	Jennings Run	TBD	2017	MDE				
Che	0		Drafting Plan	Land & Materials Admin.,				
				Abandoned Mine Land Div.				
	Lower	Lower Monocacy River Watershed	2008	Frederick County				
	Monocacy	Restoration Action Strategy	Implementing	Dept. Of Public Works,				
	River	(WRAS) Supplement. EPA A-I		Community Development				
		Requirements, Frederick County		Division				
	Casadraa	Maryland	2000	CharaBiyara				
	Sassafras	Sassafras Watersned Action Plan	2009	ShoreRivers				
	River		Implementing	(formerly Sassafras River Association)				
	Upper	Upper Choptank River	2010	Caroline County				
	Choptank	Watershed Based Plan	Implementing	Dept. of Planning & Codes				
	River							
Cas	selman River	Casselman River	2011	MDE				
(Ohi	io River Basin)	Watershed Plan for pH Remediation	Implementing	Land & Materials Admin.,				
Ì	,	,		Abandoned Mine Land Div.				
Coa	stal Bays	TBD	2017	Worcester County				
(Atlantic Ocean)			Drafting Plan					

Table footnotes: Copies of the watershed plans are available on MDE's web page: http://mde.maryland.gov/programs/Water/319NonPointSource/Pages/factsheet.aspx

Figure 4 319 Priority Watersheds in Maryland Currently Eligible for 319(h) Grant Implementation Funding

Table 2 on the previous page lists the ten 319 priority watersheds that are currently eligible to seek funding to implement a watershed plan that EPA has reviewed and accepted. In all ten watersheds, Total Maximum Daily Load (TMDL) load allocations that limit NPS loads are reiterated in the watershed plan explicit goals. For each of these watersheds, plan implementation progress tracking includes BMP implementation and load reduction estimates. Progress is reported by MDE to EPA every year in the Maryland 319 Nonpoint Source Program Annual Report.

To date, implementation of the 319 priority watershed plans has not generated information that might suggest that revision of a TMDL should be considered. However, in the Casselman River watershed which has pH TMDLs, watershed plan implementation has resulted in meeting several TMDLs at the stream segment scale and State water quality pH standards are being met in these stream segments following acid mine drainage remediation (implementation and ongoing operation and maintenance of BMPs).

In all ten watersheds, funding for NPS implementation from three grant sources is summarized in Table 3:

- Federal 319(h) Grant funds _
- State Revolving Fund -
- State Chesapeake and Atlantic Coastal Bays Trust Fund _

In one case, Antietam Creek watershed, the 319(h) Grant funding was initially used beginning in 1994 to help implement previous watershed priorities/plans that pre-dated the current the 319 Priority Watershed Plans. (See Appendix-Watersheds for details.)

Table 4. 1	Table 4. 1994-SFY2017 NPS Implementation Funding in 319 Priority Watershed Plans										
319 Priority Watershed	Projects Completed (count)	Federal 319(h) Grant (\$) (1)	State Revolving Fund (\$)	State Trust Fund (\$) (2)	Other State NPS (\$)	State Funds Total (\$) (2, 3)	Total Funds Reported (\$)				
Antietam Creek	34	3,176,276.14	424,600	696,771.99	0	1,121,371.99	4,297,648.13				
Back River (Tidal)	39	556,443.00	3,102,100	3 036 610 74	0	7 267 618 74	8 168 115 55				
Back River (Upper)	0	644,383.81	0	3,950,019.74	228,899	7,207,018.74	8,408,445.55				
Casselman River	1	782,734.00	0	6,440.19	0	6,440.19	789,174.19				
Corsica River	43	1,919,132.11	200,000	1,178,127.60	270,000	1,648,127.60	3,567,259.71				
Lower Jones Falls	29	139,000.00	0	2,229,588.50	0	2,229,588.50	2,368,588.50				
Lower Monocacy River	35	1,387,102.99	0	350,040.97	0	350,040.97	1,737,143.96				
Middle Gwynns Falls	6	320,004.00	0	706,745.56	0	706,745.56	1,026,749.56				
Sassafras River	15	64,000.00	0	1,404,829.65	0	1,404,829.65	1,468,829.65				
Upper Choptank River	32	1,174,095.43	0	303,472.78	0	303,472.78	1,477,568.21				
TOTAL	234	10,163,171.48	3,726,700	10,812,636.98	498,899	15,038,235.98	25,201,407.46				

Table 4	1994-SEV2017	NPS Implements	tion Funding in	319 Priority	Watershed Plan	c
\mathbf{I} and \mathbf{T} .			ստուլ սոսուջ ա		v atti shtu i ian	0

1) Federal includes all 319(h) Grant NPS implementation projects only. (Planning and water quality monitoring costs excluded.)

2) State Funds includes all reported State-funded implementation projects before and after watershed plan completion including State Revolving Fund and Chesapeake and Atlantic Coastal Bays Trust Fund, and "other" reported State funding (319 table).

3) State Funds exclude match for the 319(h) Grant NPS implementation projects because in Maryland it generally is not associated with a project in the local watershed.

During SFY17 in the 319 priority watersheds, two 319(h) Grant-funded projects were completed and three 319(h) Grant-funded implementation projects actively working as shown in Table 4. Additional information on all of these projects is provided in this report and in Appendix - Watersheds.

Table 5. SFY2017	7 319(h) Gr	ant-Fun	ded Imple	ementatio	on Projects	Status	
		Status		Envi	ronmental Resu	ılts (4)	
319 Priority Watershed	Completed (1)	Working (2)	Proposed (3)	Nitrogen lbs/yr	Phosphorus lbs/yr	Sediment ton/yr	
Antietam Creek	2	1	0	181.5	61.7	797.76	
Back River - Tidal	0	0	0	0	0	0	
Back River - Upper	0	1	0	0	0	0	
Casselman River	0	1	0	0	0	0	
Corsica River	0	0	0	0	0	0	
Lower Jones Falls	0	0	0	0	0	0	
Lower Monocacy River	0	0	1	0	0	0	
Middle Gwynns Falls	0	0	0	0	0	0	
Sassafras River	0	0	2	0	0	0	
Upper Choptank River	0	0	2	0	0	0	
TOTAL	2	3	5	181.5	61.7	797.76	
 (1) Project ended during SFY2017 (7/1/16 thru 6/30/17). (2) Project continued during/beyond SFY2017. (3) In MDE's application for the FFY2017 319(h) Grant (awarded 9/19/17). (4) Completed projects only. 							

Also, in 319 priority watersheds, implementation progress was accomplished using funding from sources other than the 319(h) Grant. Table 5 (next page) summarizes the aggregate pollutant load reduction by all NPS projects reported in this document regardless of funding source including annual practices like cover crops.

Additional information for each 319 priority watershed is presented in the following sections of this chapter and in Appendix - Watershed.

Maryland 319 NPS Program SFY17 Annual Report Page 11 of 30

	Table 6. SFY17 Pollutant Load Reductions in Priority Watersheds									
		Agriculture Multi-Year BMPs		Urban BMPs (Multi-Year)			All Multi-Year BMPs			
319 Priority Watershed	Sub Watershed	Nitrogen	Phosphorus	Sediment	Nitrogen	Phosphorus	Sediment	Nitrogen	Phosphorus	Sediment
		lbs/yr	lbs/yr	ton/yr	lbs/yr	lbs/yr	ton/yr	lbs/yr	lbs/yr	ton/yr
Antietam Creek	All in Maryland	11,568.6	1,113.3	545.00	659.0	23.80	25.41	12,227.6	1,137.1	570.41
Paak Divor	Tidal (entire County subwatershed)	0	0	0	497.4	175.1	26.24	497.4	175.1	26.24
Back River	Upper (Baltimore City and County)	0	0	0	664	253.2	38.11	663.7	253.2	38.11
Corsica River	All	1,368.2	145.6	21.00	129.8	0	0	1,498.0	145.6	21.00
Lower Jones Falls	All (Baltimore City and County)	0	0	0	90.6	25.2	3.87	90.6	25.2	3.87
Lower Monocacy River	All incl. Lake Linganore, Frederick Co.	8,968.4	876.1	372.71	276.0	0	0	9,244.4	876.1	372.71
Middle Gwynns Falls	All in Baltimore County only	0	0	0	459.1	155.1	23.53	459.1	155.1	23.53
Sassafras River	All in Maryland only	2,304.9	165.3	163.50	46.0	0	0	2,350.9	165.3	163.50
Upper Choptank River	All in Caroline County only	11,451.8	889.3	54.70	101.7	0	0	11,553.5	889.3	54.70
TOTAL		35,661.9	3,189.6	1,156.91	2,923.2	632.4	117.15	38,585.1	3,822.0	1,274.06
MDE used MAST to estimate poll	utant load reductions for BMPs that were report	ed by MDE to th	ne EPA Bay Prog	ram. Urban Bal	timore County	watersheds are	shaded.			

		C	over Crops SFY	17	TOTAL All BMPs SFY17			
319 Priority Watershed	Sub Watershed	Nitrogen	Phosphorus	Sediment	Nitrogen	Phosphorus	Sediment	
		lbs/yr	lbs/yr	ton/yr	lbs/yr	lbs/yr	ton/yr	
Antietam Creek	All in Maryland	85,617.9	621.0	488.30	97,845.5	1,758.1	1,058.71	
Back Diver	Tidal (entire County subwatershed)	0	0	0	497.4	175.1	26.24	
Back River	Upper (Baltimore City and County)	0	0	0	663.7	253.2	38.11	
Corsica River	All	30,943.3	92.2	26.28	32,441.3	237.8	47.28	
Lower Jones Falls	All (Baltimore City and County)	0	0	0	90.6	25.2	3.87	
Lower Monocacy River	All incl. Lake Linganore, Frederick Co.	202,826.5	1,237.4	1,060.32	212,070.9	2,113.5	1,433.03	
Middle Gwynns Falls	All in Baltimore County only	0	0	0	459.1	155.1	23.53	
Sassafras River	All in Maryland only	71,357.1	375.4	199.02	73,708.0	540.7	362.52	
Upper Choptank River	All in Caroline County only	149,326.1	0.1	71.60	160,879.6	889.4	126.30	
TOTAL		540,070.9	2,326.1	1,845.52	578,656.0	6,148.1	3,119.58	

3. Success Stories

During SFY17, MDE reported a success story on improvements in Spiker Run, which is a tributary to the Casselman River in Garrett County, Maryland. MDE planned and implemented the work necessary to eliminate the low pH impairment to the stream caused by acid mine drainage. MDE also conducted the before and after water quality monitoring and analysis that was necessary to document the in-stream improvements. See Appendix – Success Story.

4. National Water Quality Initiative

The National Water Quality Initiative (NWQI) focuses on priority watersheds with impaired streams to help farmers and forest landowners voluntarily improve water quality and aquatic habitat. Being in 2012, Maryland's NWQI area has been the Catoctin Creek watershed. It encompasses the southwestern portion of Frederick County and is framed by Catoctin Mountain on the east and South Mountain on the west. The watershed drains 120 square miles, including forested mountain slopes, agricultural valleys, and small towns. Surface waters here are impaired by sediments, nutrients, impacts to biological communities, and fecal coliform. The land use distribution in the watershed is approximately 43% agricultural, 42% forest/herbaceous and 15% urban, with agricultural land mostly planted in row crops and pasture.

In 2012, Maryland was among the first States to create a cooperative monitoring agreement to support the NWQI effort. Since that time, MDE has collaborated with the United States Department of Agriculture/National Resources Conservation Services (USDA/NRCS) to conduct in-stream monitoring in the Catoctin Creek watershed. During SFY17 this included a combination of nutrient synoptic surveys and surface water bi-weekly monitoring.

During SFY17, the following NWQI activities were conducted in the Catoctin Creek watershed:

- 1) MDE continued monitoring under the 2016 3-year interagency agreement with Maryland NRCS to fund water quality sampling and sample analysis.
- 2) Sampling during this period was conducted at the same small-watershed sites originally designated for this project.
- 3) During SFY16, MDE in cooperation with the Frederick Soil Conservation District identified a farmer who was willing to allow water quality monitoring by MDE to determine if an in-stream watershed quality change can be detected. Downstream of this farmer's land, MDE already have an existing monitoring station. In SFY17 during BMP installation, MDE begin water quality sampling within and above the farm. MDE sampling is anticipated to continue for another year.

Over the period from 2013 thru 2015, Maryland DNR reported that Catoctin Creek nitrogen levels decreased when changes in river low are accounted for. One station in Catoctin Creek showed a significant decrease in sediment levels. ¹ Analysis has not been conducted to determine if these changes can be linked to NWQI implementation.

¹Maryland Department of Natural Resources. *Water Quality Summary 2013-2015*. Preliminary report received via personal communication 11/6/17 from Renee Karrh.

B. Antietam Creek Watershed

Location

The Antietam Creek watershed encompasses 290 mi² in total. It drains part of Washington County, Maryland (118,400 acres, 185 mi²) with its headwaters in Pennsylvania. The 54 milelong Creek flows into to the Potomac River and the Chesapeake Bay. Watershed land use in Maryland is 42% agricultural, 31% forest and 27% developed.

Goals, Milestones and Progress

The State NPS Management Plan Objective 5 lists two milestones for Antietam Creek:

- Annual implementation progress reporting for goals in the 2012 watershed plan by the Washington County SCD (see next page and Appendix B), and
- 2) A 2017 assessment of progress and potential watershed plan update.

Figure 5. Antietam Creek Watershed.

Figure 6. In November 2014 during EPA's annual review of Maryland's NPS program, EPA staff joined the Washington County Soil Conservation District Manager and MDE staff in an onsite review of the proposed stream restoration on part of Little Antietam Creek. The steep eroding creek banks in the photo were typical along this part of the creek. The proposed stream restoration site assessment and design was partially funded by the 319(h) Grant in FFY2011 project #13. (MDE photo) The same vicinity after the restoration in 2107 is depicted on the next page.

Implementation Status -- Antietam Creek Watershed Plan

Between 2012 and June 2017, over \$2.49 million has been invested by State and Federal grants/loans in completed projects to help implement the Antietam Creek Watershed Plan as summarized in the table below. This investment, along with the leveraged nonfederal funds, has yielded significant pollutant load reduction. Also, this annual report includes the first reported bacteria reductions associated with a 319(h) Grant project.

Table 7: Grant Expenditures Summary 2012 to June 2017Antietam Creek Watershed Plan Implementation									
	Grant Proje	ct Expenditu	res		Р	ollutant Loa	d Reductio	n	
Grant Name	Federal Grants \$	State Grants \$	Non Federal Match \$	Total \$ Expenditures	Nitrogen lb/yr	Phosphorus lb/yr	Sediment tons/yr	E. Coli billion/yr	
319(h) Grant	1,407,509.60		938,340.07	2,345,849.67	642.8	216.5	1,136.41	166	
State Revolving Fund		424,600.00		424,600.00	202.0	10.7	0.0	0.0	
Chesapeake & Atlantic Coastal Bays Trust Fund		696,771.99		696,771.99	426.9	51.3	15.08	0	
TOTAL	1,407,509.60	1,121,371.99	938,340.07	3,467,221.66	1,271.6	278.5	1,151.49	166	

Table 8: Pollu	Table 8: Pollution Load Reduction Progress Reported								
Antietam Creek Watershed	Nitrogen lb/yr	Phosphorus lb/yr	Sediment tons/yr	E. Coli billion/yr					
2012 thru SFY16	34,347.6	1,979.0	1,800.34						
SFY17 Cover Crops	85,617.9	621.0	488.3						
SFY17 Multi-Year BMPs	12,227.6	1,137.1	570.4	0					
All Trust Fund thru SFY17	426.9	51.3	15.08	0					
Total	132,620.0	3,788.4	2,874.1	0					
Watershed Plan Goals (1)			12,923.00	5,411,472					
Percent of Goal Achieved 22.2% 0%									
All funding sources. Annual	BMPs are include	ed in SFY16 only.	See Appendix B						

Since the adoption of the watershed plan in 2012, reported pollution load reductions from all implementation has also made significant progress (table left). In the table, the Chesapeake and Atlantic Coastal Bays Trust Fund (Trust Fund) are fully reported for the first time.

Figure 7. Stream restoration construction long Little Antietam Creek took place in 2016 (below left). Construction was completed late in 2016 (belowright). The restoration was funded in part by two the 319(h) Grant in FFY2015 project #7). (photos by Washington County SCD).

Maryland 319 NPS Program SFY17 Annual Report Page 15 of 30

C. Back River Watersheds

Location

The Back River watershed is located in Baltimore County and Baltimore City. It has two Small Area Watershed Plans (SWAPs) as shown in the map and table below. EPA accepted the Tidal Back River SWAP in 2010 and the Upper Back River SWAP in 2008.

Implementation

Projects that are implementing watershed plans goals, funded thru three Federal and State grant/loan sources, are summarized on the next page. (See page 4 for project photo.) The pollutant removal goals in both the Tidal Back River and the Upper Back River watershed plans are drawn from the same nutrient TMDL. Both plans have urban BMP implementation goals. Agriculture is nearly absent in both areas. No agricultural BMP implementation was reported during SFY14-17 in either area.

Figure 8. Back River Watersheds.

The following tables were provided by Baltimore County (below and next page). They include implementation from all funding sources, such as 319(h) Grant, State Revolving Fund, the Chesapeake and Atlantic Coastal Bay Trust Fund, and others. Also see Appendix C.

Table 9. Tidal Back River Watershed Plan BMP Goals and Implementation Progress									
Management Practice	SWAP Goal	Units	2010-FY16 Progress	FY17 Activity	2010-FY16 Progress				
6. Convert Dry Ponds	2	projects	2	0	2				
10. Stormwater Retrofits	16	projects	8	0	8				
11. Impervious Cover Removal	0.5	acres	1.0	0	1.0				
12. Downspout Disconnection	12.0	rooftop acres	0.8	0	0.7				
16. Riparian Buffer Trees	156	acres	0.4	0	0				
17. Shoreline Buffer Trees	181	acres	0	0	0				
18. & 19. Upland Trees	36.75	acres	21.45	1.58	23.03				
20. Institutional Trees*	2.1	acres	5.5	0.1	5.6				
33. Shoreline Management	2	projects	1	0	1				
36. Stream Restoration	3,442	ft	1,523	0	1,523				

*These trees are double counted from 16.-19 for SWAP progress in this category but not for nutrient reductions.

Table 10. Upper Back River SWAP (Baltimore County Portion) Goal *								
Management Practice	SWAP	Units	2008-FY16	FY17	Total			
	Goal		Progress	Activity	Progress			
Convert Dry Ponds	17	projects	12	0	12			
Stormwater Retrofits	50	projects	1	0	1			
Downspout Disconnection	180	rooftop acres	4.5	0	4.5			
Riparian Buffer Trees	200	acres	3.6	0.04	3.64			
Reforestation	50	acres	21.3	1.9	23.2			
Street Trees	4,000	trees	475	0	475			
Stream Restoration	66,000	ft	2,000	0	2,000			

* Baltimore County and Baltimore City are responsible for meeting these goals collectively.

Table 11. Pollution Load Reduction Progress Tidal and Upper Back River SWAPs

Pollution Reduction Progress								
Tidal Back River Watershed	Nitrogen	Phosphorus	Sediment lbs/yr					
	lbs/yr	lbs/yr						
Completed	Measures Prior	To SWAP						
Unkown,	it is unclear in th	e SWAP						
SWA	AP Implementat	ion						
2010-FY14	1,163.4	563.3	1,671,946.1					
FY15	32.8	2.3	565.4					
FY16	168.9	9.2	3,107.9					
FY17	61.1	0.6	126.4					
2011 Fertilizer Act	1,081.7	239.4	0.0					
FY17 Street Sweeping	419.6	167.8	50,350.7					
FY17 Inlet Cleaning	16.7	6.7	2,000.8					
Total Estimated Pollutant	2,944.2	989.3	1,728,097.3					
Reductions 2010-FY17								
Watershed Plan Goals	6,498	679						
Percent of Goal Achieved	45.3%	145.7%						

Pollution Reduction Progress (Baltimore County Portion)								
Upper Back River Watershed	Nitrogen	Phosphorus	Sediment lbs/yr					
	lbs/yr	lbs/yr						
Completed	Measures Prior	r To SWAP						
	9,661.0	1,340.6	unknown					
SW	AP Implementa	tion						
2008-FY14	538.1	147.4	94,184.4					
FY15	59.1	9.7	1,192.3					
FY16	158.6	16.4	5,532.8					
FY17	37.3	2.6	1,049.6					
2011 Fertilizer Act	6,472.5	1,432.4	0.0					
FY17 Street Sweeping	561.8	224.7	67,410.5					
FY17 Inlet Cleaning	64.6	25.9	7,756.2					
Total Estimated Pollutant	7,892.0	1,859.1	177,125.8					
Reductions 2010-FY17								
Grand Total Pollutant Reductions	17,553.0	3,199.7	177,125.8					
Watershed Plan Goals*	48,189.6	6,055.8						
Percent of Goal Achieved	36.4%	52.8%						

D. Casselman River Watershed

Location

In Maryland, the Casselman River flows about 20 miles from Savage River State Forest into Pennsylvania. The watershed area is 66 square miles and is part of the Mississippi River drainage. Land use in the watershed can be aggregated into three broad categories: forest (89%), agriculture (9%), and developed land (2%).

Goal

MDE's watershed plan goal is to meet the pH water quality standard of no less than 6.5 pH and no greater than 8.5 pH by increasing alkalinity (mg CaCO₃/l). This goal is derived from the Western Maryland pH TMDLs approved in 2008 based on in-stream water quality data collected in 2005 or earlier.

Figure 9. Casselman River watershed and Phase 1 sites.

Implementation

All construction is by MDE using 319(h) FFY11 Grant funds. Phase 1 is on public land and Phase 2 is on private land, which continued thru SFY17 to install BMPs to mitigate acid mine drainage. (see Appendix D)

Figure 10. The photo shows a FFY13 319(h) Grantfunded site on private land where delivery trucks deposited limestone crushed

to sand-sized grains (grey in photo center right). The limestone particles at this site will be gradually wash downstream and distribute along the stream bed. The limestone neutralizes excess acidity and provides pH buffering capacity. (photo by MDE Land Management Administration, Abandoned Mine Land Division.)

E. Corsica River Watershed

Location

The Corsica River, which is 6.5 miles in length, is located in Queen Anne's County. The watershed area is 40 square miles and is part of the larger Chester River Watershed. Land use in the watershed aggregates into three broad categories:

- 66% agriculture,
- 26% woodland,
- 8% developed lands.

Figure 11. Corsica River Watershed

Table 12: Pollution Load Reduction Progress								
Corsica River Watershed	Nitrogen lb/yr	Phosphorus lb/yr	Sediment tons/yr					
2005 thru SFY16	49,535.0	6,106.7	1,075.35					
SFY17 Cover Crops	30,943.3	92.2	26.28					
SFY17 Multi-Year BMPs	1,498.0	145.6	21.05					
All Trust Fund thru SFY17	1,217.7	115.8	18.8					
Total 2005 thru SFY17	83,193.9	6,460.3	1,141.45					
Watershed Plan Goals (1)	NA	NA	NA					
Percent of Goal Achieved	NA	NA	NA					
All funding sources. Annual BMPs in SFY17 only. See Appendix D.								

Centreville developed the Corsica River watershed plan in 2005 with input from Queen Anne's County, Queen Anne's Soil Conservation District and others. The goal of the watershed plan is to continue meeting the nutrient TMDL. Since the plan was completed, significant pollutant reduction has been accomplished (table on left) primarily thru

investment of several million dollars of public funding (table below). In addition, a progress report covering 2005-2011 summarized watershed plan implementation status and updated BMP implementation goals. (See Appendix E)

Table 13: Grant Expenditures Summary - Corsica River Watershed Plan Implementation								
	Grant Proje	ct Expenditu	res		Polluta	nt Load Red	luction	
Grant Name	Federal Grants \$	State Grants \$	Non Federal Match \$	Total \$ Expenditures	Nitrogen lb/yr	Phosphorus lb/yr	Sediment tons/yr	
319(h) Grant	1,919,132.11	270,000.00	1,279,421.41	3,233,553.56	215,912.4	13,790.9	1,957.18	
State Revolving Fund	0	200,000.00	0	250,000.00	864.0	173.0	0.00	
Chesapeake & Atlantic Coastal Bays Trust Fund		1,178,127.60		1,178,127.60	1,217.7	115.8	18.78	
TOTAL	1,919,132.11	1,648,127.60	1,279,421.41	4,661,681.17	217,994.0	14,079.7	1,975.95	

Goals

Maryland 319 NPS Program SFY17 Annual Report Page 19 of 30

F. Lower Jones Falls Watershed

The Lower Jones Falls watershed encompasses 16,550 acres (25.9 mi^2) in Baltimore County (30.09%) and Baltimore City (69.91%). About 54 miles of streams in the watershed flow into the tidal Patapsco River and the Chesapeake Bay. Land use in the watershed is 55.9% residential (11.1% low density, 23.7% mid density and 21.1% high density). Various developed land uses cover 21.7% of the watershed (6.9% commercial, 2.4% industrial, 10.5% institutional and 1.9% highway). Open land uses account for the remaining 22.2% of the watershed area (6.1% open urban, 13.6% forest, 1.3% agriculture, 0.6% bare ground, 0.6% extractive and 0.3% water). Overall impervious cover is 31.8%.

Implementation Status

In the tables, Baltimore County and City are both responsible for the goals.

Figure 12. Jones Falls Watershed

Table 14. Lower Jones Falls SWAP Pollution Reduction Progress *								
(Baltimore County Portion)								
Lower Jones Falls Watershed Nitrogen lbs/yr Phosphorus lbs/yr Sediment lbs/y								
Comple	eted Measures Prior '	To SWAP						
	7,751	1,166	418,556					
	SWAP Implementati	on						
FY09-FY14	149.5	1.6	698.6					
FY15	0.6	0.0	25.6					
FY16	44.1	1.1	537.8					
FY17	29.8	0.9	439.8					
2011 Fertilizer Act	7,016.7	920.5	0.0					
FY17 Street Sweeping	52.0	20.8	6,236.0					
FY17 Inlet Cleaning	8.8	3.5	1,058.1					
Total Estimated Pollutant Reductions	7,301.5	948.4	8,995.9					
FY09-FY17								
Grand Total Pollutant Reductions	15,052.5	2,114.4	427,551.9					
Watershed Plan Goals*	23,146	3,887	409,800					
Percent of Goal Achieved*	65.0%	54.4%	104.3%					

* Baltimore County and Baltimore City are responsible for meeting these goals collectively. Also see Appendix F. Maryland 319 NNP Program SFY17 Annual Report Page 20 of 30

G. Lower Monocacy River Watershed

Location

The Lower Monocacy River watershed encompasses 194,700 acres (304 mi²) that drains portions of Frederick County (87%), Montgomery County (10%) and Carroll County (3%). The mainstem of the Monocacy River is 58 miles long. The Monocacy River drains into the tidal Potomac River and then the Chesapeake Bay. Overall impervious cover is 4% but it is concentrated in two subwatersheds: Carroll Creek (18.6%) and Ballenger Creek (13.4%). Land use in the watershed is:

- 47% Agricultural
- 30% Forest
- 22% Developed land uses

Figure 13. Monocacy River Watershed.

Goals and Implementation

Frederick County's 2004 Lower Monocacy River Watershed Restoration Action Plan addresses 168,960 acres (264 mi²) within the County. The County's 2008 plan supplement incorporated goals from the Lake Linganore sediment TMDL, which is based on data collected in 2002 and earlier.

Table 15: Pollution Reduction Progress Reported								
Lower Monocacy River Watershed	Nitrogen lb/yr	Phosphorus lb/yr	Sediment tons/yr					
Prior Years	37,312.1	3,239.8	1,568.87					
SFY17 Cover Crops	202,826.5	1,237.4	1,060.3					
SFY17 Multi-Year BMPs	8,968.4	876.1	372.7					
All Trust Fund thru SFY17	1,558.9	93.3	21.0					
Total Estimated Pollutant Reduction 2008 thru 2014	250,665.9	5,446.5	3,022.9					
Watershed Plan Goals (1)	649,998	68,952	10,345					
Percent of Goal Achieved 38.6% 7.9% 29.2%								
Prior Years data is from 2013 and Maryland Chesapeake Bay WIP reporting SFY14-SFY16. See Appendix G for more detail.								

The adjacent table shows that significant estimated pollutant load reduction was achieved during state fiscal year. However, much of the estimated pollution reduction is associated with annual cover crops. Therefore, a continuation of annual cover crop planting is necessary in the future.

Table 16: Grant Expenditures SummaryLower Monocacy River Watershed Plan Implementation									
	Grant Expe	Pollut	ant Load Red	luction					
Grant Name	Federal Grants \$	State Grants \$	Non Federal Match \$	Total \$ Expenditures	Nitrogen lb/yr	Phosphorus lb/yr	Sediment tons/yr		
319(h) Grant	1,387,102.99		749,963.33	1,973,314.60	3,154.3	418.3	32.28		
State Revolving Fund		0		0	0	0	0		
Chesapeake & Atlantic Coastal Bays Trust Fund		350,040.97		350,040.97	1,558.9	93.3	20.99		
TOTAL	1,387,102.99	350,040.97	749,963.33	2,323,355.57	4,713.2	511.6	53.27		

Implementation Status – Lower Monocacy River Watershed Plan

The summary table above indicates that significant estimated pollutant load reductions have been reported as a result of over \$1.38M in Federal 319(h) Grant funds that leveraged about three quarters of a million dollars in local match in the Lower Monocacy River watershed. (see Appendix G)

H. Middle Gwynns Falls Watershed

The Middle Gwynns Falls watershed encompasses 14,881 acres (23.25 mi^2) in **Baltimore County** (Baltimore City portion of watershed in not addressed in the watershed plan). About 77.9 miles of streams in the watershed flow into the tidal Patapsco River and then the Chesapeake Bay. The tables below show watershed plan implementation activity.

Figure 14. Gwynns Falls watershed in Baltimore County

Table 17.	Table 17. Middle Gwynns Falls SWAP Pollution Reduction Progress								
Middle Gwynns Falls	Nitrogen lbs/yr	Phosphorus lbs/yr	Sediment lbs/yr	Bacteria					
Watershed									
	Completed M	leasures Prior To SWA	AP						
Through August 2013	6,128.8	572.2	808,461.0						
	SWAI	P Implementation							
September 2013-FY14	163.6	135.5	90,350.2						
FY15	137.7	8.5	12,551.3	15% reduction					
FY16	281.1	20.9	18,440.8	49% reduction					
FY17	71.0	1.5	970.6	28% reduction					
2011 Fertilizer Act	4,928.0	640.0	0.0						
FY17 Street Sweeping	346.1	138.4	41,531.1						
FY17 Inlet Cleaning	37.97	15.19	4,555.86						
FY17 Septic Pumpouts	4.0	na	na						
Total Estimated Pollutant	5,969.5	960.0	168,399.9						
Reductions Post-SWAP									
Grand Total	12,098.3	1,532.2	976,860.9						
Watershed Plan Goals	50,442*	4,086*	4,095,076.1**	99.99%					
Percent of Goal Achieved	24.0%	37.5%	23.9%	49%					

* Chesapeake Bay TMDL. ** Local Sediment TMDL issued by the State: 36.4% reduction.

For more information see Appendix H.

Implementation Status

Table 18: Grant Expenditures Summary - Middle Gwynns Falls Watershed Plan Implementation								
	Grant Proje	ct Expendit	ures		Pollutant Load Reduction			
Grant Name	Federal Grants \$	State Grants \$	Non Federal Match \$	Total \$ Expenditures	res Nitrogen Phosphorus Sediment Bacteri lb/yr lb/yr tons/yr MPN/y			
319(h) Grant	320,004.00		213,336.00	533,340.00	415.2	136.4	306.2	0
State Revolving Fund		0		0	0	0	0	0
Chesapeake & Atlantic Coastal Bays Trust Fund		706,745.56		706,745.56	438.5	137.9	307.0	0
TOTAL	320,004.00	706,745.56	213,336.00	1,240,085.56	853.7	274.3	613.2	0

Figure 14. The two photos show existing conditions in the Scotts Level Branch drainage area in the vicinity of Marriottsville Road within the Middle Gwynns Falls watershed. A FFY2016 319(h) Grant for over \$0.6M is scheduled to begin construction sometime next year to eliminate the eroding vertical stream banks and to restore the stream area. Total project cost is projected to be well over \$1.0M. Project completion is projected before June 2019. (photo by Baltimore County Dept. of Environmental Protection and Sustainability, Capital Program and Operations Section).

Maryland 319 NPS Program 2017 Annual Report Page 24 of 30

I. Sassafras River Watershed Plan

The Sassafras River watershed encompasses 62,000 acres (96.9 mi²) that drains portions Kent County, MD (57%), Cecil County, MD (28%) and New Castle County, DE (8%). The 20.6 mile-long Sassafras River mainstem flows into the Chesapeake Bay. Impervious area covers 2.2% of the watershed. Land use in the watershed is 57% agricultural, 24% forest, 4% developed, 14% water, and 1% wetland.

Figure 15. Sassafras River watershed map

Plan Implementation Progress

The 2009 Sassafras River Watershed Action Plan (SWAP) was developed by the Sassafras River Association (SRA). On November 15, 2017 the SRA, which is the lead Sassafras plan implementer announced that it is merging with two other NGOs. The new NGO, called ShoreRivers, is anticipated to continue as the lead implementer of the Sassafras Plan. Implementation tracking progress is summarized on the next page.

Figure 16. The photo above shows a newly constructed BMP on a Kent County farm as seen 9/26/17 when EPA and MDE representatives visited. The farm's steep slope and large drainage area required that grade stabilization be provided by rock. In between the rock, several bioretention/treatment wetland areas are ready for planting. Representatives in photo: Kent Soil Conservation District Board member, Sassafras River Association agricultural project leader. (photo by MDE, Integrated Water Planning Program)

Table 19: Grant Expenditures Summary - Sassafras River Watershed Plan Implementation								
	Grant Project Expenditures						duction	
Grant Name	Federal Grants \$	State Grants \$	Non Federal Match \$	Total \$ Expenditures	Nitrogen lb/yr	Phosphorus lb/yr	Sediment tons/yr	
319(h) Grant	64,000.00		42,666.67	108,333.33	100.7	20.2	2.6	
State Revolving Fund	0	0	0	0	0	0	0	
Chesapeake & Atlantic Coastal Bays Trust Fund		1,404,829.65		1,404,829.65	12,121.4	8,663.4	133.5	
TOTAL	64,000.00	1,404,829.65	42,666.67	1,513,162.98	12,222.1	8,683.6	136.1	

Implementation Status – Sassafras River Watershed Plan

The table above shows that, among three State administered funding sources, Maryland's Chesapeake and Atlantic Coastal Bays has had the most significant impact in the Sassafras River watershed. During SFY2017, there were no projects working or completed using 319(h) Grant or the State Revolving Fund. However, two projects were proposed on three farms for future 319(h) Grant funding:

- Harbor View and Colchester Farms Project involves constructing a mixture of cascading wetland system, bioretention and enhanced treatment infiltration, and
- Starkey Project involves constructing multi-celled treatment wetlands, wetland creation/restoration and stabilization of an eroded gully.

Table 20: Pollution Reduction Progress							
Sassafras River Watershed	Nitrogen lb/yr	Phosphorus lb/yr	Sediment tons/yr				
Previous Years	11,000.5	917.6	430.75				
SFY17 Cover Crops	71,357.1	375.4	199.0				
SFY17 Multi-Year BMPs	2,353.5	165.3	163.51				
All Trust Fund thru SFY17	12,121.4	8,663.4	133.5				
Total Pollutant Reduction	96,832.5	10,121.8	926.7				
Watershed Plan Goals (1)	46,475	6,458	721.9				
Percent of Goal Achieved	208.4%	156.7%	128.4%				
All funding sources. Annual BMPs in SFY17 only. See Appendix I.							

The table shows that pollutant reductions reported during SFY2017 made significant progress to watershed plan goals.

However for nitrogen load reduction, annual cover crops account for more than two thirds of the achievement. Consequently, land owner efforts and the funding sources that support their efforts much be maintained indefinitely to continue nitrogen load reduction progress into the future.

Phosphorus and sediment pollutant load reduction continue to be more associated with multi-year BMPs. This suggests that annual implementation may account for a smaller percentage of future BMP implementation needs.

J. Upper Choptank River

Location

The Upper Choptank River watershed encompasses 163,458 acres (255 mi²) and drains parts of three Maryland counties (Caroline, Talbot and Queen Anne's) and parts of Delaware. It flows into the Chesapeake Bay. Impervious area covers 2.2% of the watershed. Land use in the watershed is: 58% agricultural; 31% forest; 8% developed and; 3% water.

Goal

Caroline County's Upper Choptank River watershed plan remains unchanged since 2010. It is based on Tributary Strategy NPS goals and EPA's Chesapeake Bay Program 2002 pollutant load estimates for the Upper Choptank River watershed. The Plan's NPS pollutant load reduction goals are:

- Total nitrogen reduction: 704,000 lbs/year
- Total phosphorus reduction: 34,500 lbs/year.

Figure 17. (above) Upper Choptank River Watershed.

Table 21: Grant Expenditures SummaryUpper Choptank River Watershed Plan Implementation									
Grant Project Expenditures					Pollutant Load Reduction				
Grant Name	Federal Grants \$	State Grants \$	Non Federal Match \$	Total \$ Expenditures	Nitrogen lb/yr	Phosphorus lb/yr	Sediment tons/yr		
319(h) Grant	1,174,095.43		782,730.29	1,956,825.72	145,137.3	11,988.1	666.91		
State Revolving Fund		0		0	0	0	0		
Chesapeake & Atlantic Coastal Bays Trust Fund		303,472.78		303,472.78	3,888.6	157.6	853.5		
TOTAL	1,174,095.43	303,472.78	782,730.29	2,260,298.50	149,025.9	12,145.7	1,520.42		

Table 22: Pollution Load Reduction Progress								
Upper Choptank River Watershed	Nitrogen lb/yr	Phosphorus lb/yr	Sediment tons/yr					
2002 thru SFY16	196,996.8	18,057.5	1,015.36					
SFY2017 Cover Crops	149,326.1	0.1	71.6					
SFY17 Multi-Year BMPs	11,553.5	889.3	54.7					
All Trust Fund thru SFY17	3,888.6	157.6	853.5					
Total Estimated Pollutant Reduction	357,876.4	18,946.9	1,141.67					
Watershed Plan Goals (1)	704,000	34,500						
Percent of Goal Achieved	50.8%	54.9%						
All funding sources. Annual BMPs (cover crops) are shown in SFY17 only. See Appendix J.								

Implementation Status – Upper Choptank River Water Plan

The pollutant load reduction progress table above summarizes overall watershed plan implementation progress based on available reporting. Annual cover crops for SFY2017 comprise 40% of the total estimated nitrogen pollutant load reduction for implementing the watershed plan. This suggests that cover crop planting will continue to be an important annual practice for future years of watershed plan implementation.

V. Areas of Concern/Recommendations/Future Actions

Key challenges addressed by the 319 NPS Program, in collaboration with other state efforts, include increasing NPS pollution in some areas, resource constraints versus measureable environmental results, and reporting NPS Implementation Progress. These issues were presented in the 2013 and 2014 Annual Reports, which are available on MDE's web page at http://www.mde.state.md.us/programs/Water/319NonPointSource/Pages/Programs/WaterPrograms/319NPS/index.aspx Several additional issues relating to timeframe, estimating pollutant load reduction and limitations of the 319(h) Grant are noted below.

A. Timeframe

The SFY17 Annual Report continues to use the timeline initiated in the SFY15 Annual Report to synchronize progress reporting for CWA Section 319(h) NPS Program and the EPA Chesapeake Bay Program (CBP) to the degree that these two programs allow. However, this synchronization is cannot be fully realized because of differing deadline requirements. Therefore, MDE anticipates the following schedule for finalizing this annual report:

- December/January: draft BMP implementation progress data for the state fiscal year is submitted to the EPA Bay Program.
- January: MDE uses the draft data to produce the draft annual report.
- February 1: The draft annual report is due to EPA Region 3
- February/March:
 - 1) EPA CBP uses the States' draft BMP progress data to run the Chesapeake Bay model. Based on the model run(s), the data is updated and/or revised. MDE uses the latest data to revise the annual report.
 - 2) The draft annual report is reviewed by EPA Region 3 and revised by MDE.
- April: BMP progress data is finalized and then Annual Report is finalized thereafter.

B. Completeness, Accuracy and Consistency of BMP implementation and tracking data

Significant effort has been invested by State agencies to improve the completeness and accuracy of BMP implementation data. Some of this work has been funded by an EPA grant under the Chesapeake Bay Regulatory and Accountability Program (CBRAP). The first grant "CBRAP1" ran from 7/1/10 thru 6/30/17. The second grant "CBRAP2" started 7/1/16 and continued thru SFY17. These grants have been used by Maryland to help address issues involving both point sources and nonpoint sources. Several of the work areas called Objectives that address nonpoint source issues are:

- Agriculture NPS
 - Technical assistance for farmers drafting and updating nutrient management plans to meet State requirements. (funded from 7/1/10 thru 6/30/18 under Objective 10 CBRAP1 and CBRAP2)
 - Agricultural Watershed Implementation Plan coordination to meet the Chesapeake Bay TMDL. (funded from 7/1/10 thru 6/30/18 under Objective 11 CBRAP1 and CBRAP2)
 - Poultry manure management assessments and compliance (funded from 7/1/10 thru 6/30/13 under Objective 12 CBRAP1 only)
 - Nutrient management review and compliance (funded 7/1/14 thru 6/30/17 under Objective 23 CBRAP1 only)

- Best management practice verification (funded 3/15/15 thru 6/30/17 under Objective 29 CBRAP1 and CBRAP2)
- Urban NPS
 - Accountability framework development and implementation at the State and local levels such as establishing watershed implementation plans, monitoring progress of NPS implementation by setting two-milestones and tracking efforts to meet plan goals and milestones (funded 7/1/2012 thru 6/30/18 under Objective 16 CBRAP1 and CBRAP2)
 - Coordination of among State programs and with local agencies to expedite NPS implementation (funded 7/1/10 thru 6/30/18 under Obj. 9 CBRAP1 and CBRAP2, funded 7/1/11 thru 6/30/13 under Obj. 13 CBRAP1 only and funded 7/1/12 thru 6/30/18 under Obj. 15 CBRAP1 and CBRAP2).
 - Development, deployment, updating and training for a tool for tracking and envisioning NPS implementation scenarios. The Maryland Automated Scenario Tool (MAST). (Funded 7/1/10 thru 11/21/11 under Obj. 3 CBRAP1 only, funded 3/1/12 thru 12/31/12 under Obj. 18 CBRAP1 only and funded 7/1/16 thru 6/30/17 under Obj. 36 CBRAP2 only).
- Data Management
 - Enhancing statewide data management integration and efficiency. (funded 1/1/15 thru 6/30/17 under Obj. 26 CBRAP1 only).
 - Development and deployment of the new data management system using FFY16 and FFY17 319(h) Grant funds.

C. Differences in 319 Priority Watershed Plan Implementation and Tracking

Prior to the SFY15 Annual Report, reporting and tracking for NPS implementation in each 319 priority watershed was limited to local capabilities using diverse methods. Reporting was inconsistent and there was no basis for comparison among the watersheds. Beginning with the SFY15 Annual Report, MDE used data collected for the EPA Chesapeake Bay Program to create a consistent reporting method that allows consistent reporting and comparability statewide.

There are significant differences in participation among local jurisdictions. Some participate fully, several participate only indirectly (public newsletters) or not at all. Among these, Baltimore County is fully engaged but is dissatisfied with the tracking methods used for statewide reporting and prefers to supply their own estimates of progress that were used in the watershed-specific reporting in this report. For all 319 priority watersheds except for Baltimore County, MDE used the Maryland Assessment and Scenario Tool (MAST) to estimate BMP pollutant load reductions for nitrogen, phosphorus and sediment for SFY14 thru SFY17. In the Annual Report executive summary and for Milestones Objective 3, MDE used only MAST estimates for all 319 watersheds in aggregate instead of attempting to mesh these two very divergent tracking/reporting methods.

Beginning in 2018 when the Chesapeake Bay Model Phase 6 is available, MAST will no longer be used by Maryland. It is anticipated that the SFY18 Annual Report will use the Chesapeake Bay Assessment and Scenario Tool (CAST). This transition may cause pollutant load reduction tracking for the SFY18 Annual Report to be incompatible with prior year's Annual Reports.

D. Limitation to Using 319(h) Grant Funds for NPS Implementation

Maryland 319 NPS Program SFY17 Annual Report Page 30 of 30

As first reported in the 2014 Annual Report, local interest in funding NPS implement use the 319(h) Grant has tended to very limited. Therefore, for 2014 thru SFY17 few 319-funded BMPs have been completed and total pollutant load reduction reported is small compared to other reported funding sources.

Beginning in SFY17, consistent with EPA guidance began reporting 319(h) Grant matching funds AND pollutant load reductions associated with the matching funds.
Maryland 319 NPS Program SFY17 Annual Report Appendix A Financial Information

Page 1 of 7

Contents

- Federal 319(h) Grant Funds Awarded To Maryland
 - o Overview
 - Award Amounts
- Nonpoint Source Expenditures Reported for Maintenance of Effort
 - Summary 1996 thru 2014
 - Most recent report to EPA
- 319(h) Grant Implementation Funding Distribution
 - o State Targeting Priorities
 - Watershed Planning Efforts to Seek Eligibility for 319(h) Grant Implementation Funding
- Watershed Monitoring Funded by the 319(h) Grant

Grant funding from the Federal Clean Water Act Section 319(h) was first awarded to the State of Maryland in 1990. The graph above shows the Federal funds in each grant award. As the graph shows, grant awards received by Maryland from FFY2014 thru FFY2017 have been similar funding levels. The allocation to Maryland is based on a national formula for distribution of 319 (h) Grant funds among the States, which has remained unchanged since the early 1990s.

The table on the next page lists the award amounts and the amount of nonfederal match for each award. The year shown for each grant award is the Federal Fiscal Year (FFY) that the federal funds were appropriated. Upon award, each grant has a maximum life of five years.

Award Amounts for Federal 319(h) Grant Funds Awarded To Maryland

Since 1990, about \$59 million in Federal 319(h) Grant funds have been awarded to Maryland as shown in the table below.

Federal 319(h) Grant Funds Awarded To Maryland By Federal Fiscal Year Appropriated												
Federal Fiscal Year (1)	National Budget 319(h) Grant (millions)	319(h) Grant Allocated to Maryland (2)	Non-Federal Match By Maryland (3)	Total Grant + Match In Maryland								
1990	\$38.0	\$447,771	\$298,514	\$746,285								
1991	\$51.0	\$890,039	\$593,359	\$1,483,398								
1992	\$52.5	\$939,298	\$626,199	\$1,565,497								
1993	\$50.0	\$877,070	\$584,713	\$1,461,783								
1994	\$80.0	\$1,494,413	\$996,275	\$2,490,688								
1995	\$100.0	\$1,755,964	\$1,170,643	\$2,926,607								
1996	\$100.0	\$1,541,980	\$1,027,987	\$2,569,967								
1997	\$100.0	\$1,327,699	\$885,133	\$2,212,832								
1998	\$105.0	\$1,327,699	\$885,133	\$2,212,832								
1999	\$200.0	\$2,708,298	\$1,805,532	\$4,513,830								
2000	\$200.0	\$2,467,576	\$1,645,051	\$4,112,627								
2001	\$237.5	\$2,958,486	\$1,972,324	\$4,930,810								
2002	\$237.5	\$3,035,576	\$2,023,717	\$5,059,293								
2003	\$238.5	\$3,104,500	\$2,069,667	\$5,174,167								
2004	\$237.0	\$3,369,190	\$2,246,127	\$5,615,317								
2005	\$207.3	\$2,675,598	\$1,783,732	\$4,459,330								
2006	\$204.3	\$2,666,655	\$1,777,770	\$4,444,425								
2007	\$199.3	\$2,551,736	\$1,701,157	\$4,252,893								
2008	\$200.9	\$2,653,500	\$1,769,000	\$4,422,500								
2009	\$200.9	\$2,575,782	\$1,717,188	\$4,292,970								
2010	\$200.9	\$2,860,785	\$1,907,190	\$4,767,975								
2011	\$175.5	\$2,283,639	\$1,522,426	\$3,806,065								
2012	\$164.5	\$2,091,000	\$1,394,000	\$3,485,000								
2013	\$155.9	\$1,990,999	\$1,327,333	\$3,318,332								
2014	\$159.3	\$2,119,118	\$1,412,745	\$3,531,863								
2015	\$159	\$2,084,277	\$1,389,518	\$3,473,795								
2016	\$164.92	\$2,109,728	\$1,406,485	\$3,516,213								
2017		\$2,236,500	\$1,491,000	\$3,727,500								
T ()	* 4 • 4 • •	A =0.444.6=0	* ***									
lotal	\$4.219.7	\$59.144.876	\$39.429.917	1 \$98.574.793								

1) Federal Fiscal Year is the year of appropriation. Shaded rows are grant years that have closed

in Maryland. Other years shown are active grant years in Maryland.

2) Federal grant amount awarded to Maryland by Federal Fiscal Year. Includes EPA in-kind.

3) Matching funds required for each grant award (40%) from nonfederal sources.

Maryland 319 NPS Program SFY17 Annual Report Appendix A Financial Information Page 3 of 7

Expenditures Reported By The State Of Maryland For NPS Programs and Projects Excluding 319(h) Grant & Match

Summary State Fiscal Year 1996 thru 2017

The Federal Clean Water Act's 1987 Amendments include provisions to ensure that the States do not use Section 319(h) Grants to replace State expenditures that already were occurring. This Maintenance Of Effort (MOE) requirement ensures that each State's NPS expenditures are at least equal to or greater than the baseline level set in the 1990s. Maryland's minimum Maintenance Of Effort is \$8,447,270 annually.

As a prerequisite for receiving the next 319(h) Grant award, each State is required to document that their nonfederal expenditures for NPS programs and projects in the previous year, not counting match, meet their MOE. MOE expenditures reported by Maryland are cumulative expenditures in a single State fiscal year (July 1 through June 30) by three State agencies: Maryland Department of Agriculture (MDA); Maryland Department of the Environment, and Maryland Department of Natural Resources (DNR).

The graph above shows that Maryland consistently surpasses its MOE. Beginning in 2013, NPS expenditures by DNR's Chesapeake and Atlantic Coastal Bays Trust Fund were included in the MOE. Expenditures for nonpoint programs and projects by other State agencies, local governments, private organizations or other entities have not been included in Maryland's MOE reporting to EPA. Therefore, it is likely that the total annual expenditure for nonpoint source programs and projects in Maryland is significantly greater than the dollar amount reported to meet MOE requirements.

Maryland 319 NPS Program SFY17 Annual Report **Appendix A Financial Information** Page 4 of 7

319(h) Grant Implementation Funding Distribution 2002 thru SFY2017

The following table summarizes 319(h) Grant budget allocations of Federal funds for implementation by watershed, county and region of Maryland. This view is an indicator of efforts by State grant managers, with the essential cooperation of local implementers, to direct Federal 319(h) Grant funds to watersheds that are eligible for the funds. The table does not address actual expenditures of either Federal or nonfederal funds associated with the projects. Additional context for table and the following analysis includes:

- Implementation Funding in the table includes expenditures for entire completed implementation projects, which may include design, construction, staff (project management) and related supplies, travel, etc.
- Expenditures for 319 implementation funding included:
 - Watersheds currently eligible for 319 implementation funding.
- Expenditures implementation funding not included:
 - Watershed plan areas where implementation is complete and no longer eligible.
 - Watersheds that received 319 implementation funding in 2002 or later but are not currently eligible.
- State Targeting Priorities (see below)
- Local Priorities for Seeking 319(h) Grant Funds (see below)

State Targeting Priorities

- Agricultural Technical Assistance. MDE and the Maryland Dept. of Agriculture (MDA) cooperated in the 1990s and early 2000s to prioritize watersheds for 319 funding to support technical staff in Soil Conservation District Offices who facilitated implementation of BMPs. This targeting included Antietam Creek and Upper Choptank River.
- Success Story Targeting. In approximately 2009, MDE assessed types of impairment and geographic areas to find combinations that were most likely to be correctable in the near term. Based on the assessment, MDE determined that acid mine drainage (AMD) tended to be a discrete impairment that could be mitigated within several years of monitoring and implementation so that success could be demonstrated. Then considering additional AMD prioritization assessments by technical experts in MDE and the existing ability for MDE to carry out watershed planning and impairment mitigation, two areas in Garrett County were selected for implementation: Aaron Run and Casselman River watersheds.
- Local Cooperation. With the exception of AMD mitigation (above), MDE relies on local jurisdiction willingness and interest to: 1) conduct watershed planning that leads to eligibility for 319(h) Grant implementation funding and 2) assume responsibility to implement the watershed plan and compete for 319 implementation project funding. MDE encourages local jurisdictions in this regard by offering technical assistance and 319 grant funding opportunities (within the limits of available resources). Baltimore County had the greatest interest in achieving watershed plan eligibility of any jurisdiction in Maryland. Additionally, several jurisdictions have competed for implementation funding most frequently and successfully: Baltimore County, Caroline County, Centreville/Queen Anne's County, and Washington County Soil Conservation District.

Watershed Planning Efforts to Seek Eligibility for 319(h) Grant Implementation Funding

Beginning in 2005, fifteen watershed planning efforts focused on meeting eligibility requirements for Federal 319(h) Grant implementation funding. The list below summarizes the current status of those efforts. Numerous watershed planning efforts by jurisdictions and agencies during the same time period that did not involve seeking 319-eligibility are not listed.

List of Watershed Planning Efforts Focused On												
Eligibility for 319(h) Grant	Implement	ation Funding										
2005 thru State Fiscal Year 2017												
Watarshad Plan Pasnansihla Entity	# of	Significant	Status									
Watersheu I fan Kesponsible Entity	Plans	Contributor	June 2016									
Poltimora County	1	na	implemented									
Baltimore County	4	na	eligible									
Calvert County	1	na	not eligible									
Caroline County	1	MDE	eligible									
Centreville / Queen Anne's County	1	DNR	eligible									
Frederick County	1	na	eligible									
MDE	1	MDE	eligible									
MDE	1	MDE	drafting									
Prince George's County	1	na	not eligible									
Sassafras River Association	1	na	eligible									
Washington County Soil Conservation District	1	MDE	eligible									
Worcostor County	1	MDE	not eligible									
worcester County	1	na	drafting									

The table on the next page, total Federal 319(f) grant funds expended in each of these watersheds is summarized. The expenditures shown includes all 319 funding both before and after EPA accepted the watershed plan. For example, the expenditures listed for the Lower Jones Falls watershed were invested years prior to the completion of the watershed plan.

319(h) Grant Implementation Budget Funding Distribution 2002 thru SFY2017 Based on Completed Implementation Projects Total Expenditures*

Expendit	ures within a Lo	cal Jurisdiction	l	C	hesapeake	Bay	Coastal Ba	nys	Ohio River H	Basin
Name	# of Eligible	Federal Grant	%	Eligible	Watershed	Federal	Eligible	Federal	Eligible	Federal
- Cullic	Watershed Plans	Budget \$	70	Engible	vi uter sneu	Grant \$	Watershed	Grant \$	Watershed	Grant \$
Allegany	0	0								
Anne Arundel	0	0								
Baltimore City	2	139.000	1%	Back River -	Upper	0				
	_		- / •	Jones Falls - I	Lower	139,000				
				Back River -	Tidal	556,443				
Baltimore County	4	1,659,831	15%	Back River -	Upper	644,384				
		, ,		Gwynns Falls	- Middle	320,004				
				Jone Falls - L	ower	139,000				
Calvert	0	0	110/							
Caroline	l	1,174,095	11%	Choptank Riv	ver - Upper	1,174,095				
Carroll	0	0								
Cecil	1	0		Sassafras Riv	er	0				
Charles	0	0								
Dorcester	0	0								
Frederick	1	1,387,103	12%	Monocacy Ri	ver - Lower	1,387,103				
Garrett	1	1,635,115	15%	Aaron Run		936,000			Casselman River	699,115
Harford	0	0								
Howard	0	0								
Kent	1	64,000	1%	Sassafras Riv	er	64,000				
Montgomery	0	0								
Prince George's	0	0								
Queen Anne's	1	1,919,132	17%	Corsica River	ſ	1,919,132				
Somerset	0	0								
St Mary's	0	0								
Talbot	0	0								
Washington	1	3,176,276	28%	Antietam Cre	ek	3,176,276				
Wicomico	0	0								
Worcester	0	0					Coastal Bays	0		
	Overall TOTAL	11,154,552	100%	Drainage A	Area Total \$	10,455,437		0		699,115
				Percen	nt of Total \$	94%		0%		6%

Region	Count	Total \$	%
Central Md	4	1,798,831	16%
Eastern Shore	3	3,157,227	28%
Southern Md	0	0	0%
Western Md	3	6,198,494	56%
Maryland TOTAL	10	11,154,552	100%

* Note: Table includes only watersheds that are currently eligible for Federal Clean Water Act Section 319(h). Other watersheds that previously received 319 implementation funds (Deer Creek, St. Clements Bay, etc.) are not included.)

Summa	Summary of 319 Priority Watershed Monitoring (Water Quality and Biological) Funded by the 319(h) Grant														
Watershed	Sub Watershed	Synoptic Survey													
Antietam Creek		2015: 2 sites		MDE BA 2013-2015				MDE TW 2009 2011-2015							
Back River															
Casselman River			MDE TW 2010-2016	MDE BA 2011-2016			2015 Big Laurel Run 2016 Little Laurel Run 2017 Spiker Run								
Catoctin Creek								MDE TW 2012-2016							
Corsica River		2016: 1 site 2014: 2 sites	MDE TW 2007-2012	MDE TW 2005-2007	MDE TW 2005-2017	MDE TW 2007-2015		MDE TW 2008-2013 2015-2016							
Lower Jones Falls															
Lower Monocacy River	Bens Branch, Linganore Cr		MDE TW 2005-2015	MDE TW 2005-2007			2008 Bens Branch	MDE TW 2005-2007							
Middle Gwynns F.															
Sassafras River (1)								MDE TW 2006-2007							
Upper Choptank River		2016: 2 sites 2015: 1 site 2014: 1 site													

Anti-Degradation = \overline{MDE} BA sampling benthic macroinvertebrates and/or fish communities usually on a single day in Spring. Before/After = Sampling before and after implementing NPS BMPs to gauge in-stream water quality affects.

Bens Branch = 2008 success story, site is also called Hunting Lotte Farm.

Benthic = MDE BA sampling benthic macroinvertebrates and/or fish communities before and after NPS BMP implementation.

Long Term = Weekly grab (whole & filtered) and flow weighted composite samples for total and dissolved nutrients

MDE BA = MDE Biological Assessment for Water Quality Protection and TMDL Implementation

MDE TW = MDE Targeted Watershed Monitoring of NPS Implementation Progress

OSDS = Monitoring pre and post land use change re OSDS implementation: TDN, NH4, NO23, NO2, PO4, CL.

NSS = Nutrient Synoptic Survey: whole & filtered samples for total & dissolved nutrients. Sometimes: chlorides, sulfates, bacteria, other. Success Story = Year that MDE submitted and EPA accepted the success story. Success stories listed were supported by the before/after monitoring and/or the benthic monitoring listed for the table.

(1) Final Report for 319(h) Grant FFY2006 project #8.

Appendix B

Antietam Creek in Washington County, Maryland Watershed Eligible for 319(h) Grant Implementation Funding

Contents

- Introduction
- Milestones
- Water Quality Monitoring Activity, Overall Condition, Trends
 - Index of Biological Integrity
 - Water Quality Monitoring Before/After Plan Implementation
- Grant-Funded Implementation Projects
 - o 319(h) Grant: synopsis of multi-phase projects fully completed during SFY17
 - o 319(h) Grant: projects tracking table
 - State Revolving Fund
 - o Chesapeake and Atlantic Coastal Bays Trust Fund
- BMPs reported for agricultural and urban practices for State Fiscal Year 2016

Introduction

The Antietam Creek Watershed Restoration Plan was completed by the Washington County Soil Conservation District, with technical assistance by MDE, in September 2012. EPA accepted the plan in September 2012. The watershed covered by the Antietam Creek watershed plan is the drainage in Maryland only. In Maryland, the Antietam Creek watershed is entirely within Washington County. Pennsylvania is not addressed in the watershed plan.

Sediment reduction goal is 12,923 tons (Antietam Creek watershed plan Table 8, page 27).

Bacteria reduction goal is 5,411,472 billion E. Coli bacteria MPN/year (Antietam Creek watershed plan Table 10, page 34). (MPN is most probable number)

Base Year for watershed plan implementation is 2012. The watershed plan accounts for pollutant reductions and BMP implementation prior to that year in setting the watershed plan goals. Pollutant load reductions and BMP implementation reported beginning 2012 can be counted toward meeting watershed plan goals.

Milestones

Maryland's 2015-2019 NPS Management Plan Objective 5 includes two milestones for this watershed:

- Annually: Report progress in the 319 Annual Report, and
- 2017: Assess implementation progress toward sediment and bacteria reduction watershed plan milestones and update the plan if needed. (This reiterates a pre-existing milestone in the watershed plan.)

Water Quality Monitoring Activity, Overall Condition, Trends

Index of Biological Integrity¹

Beginning in 2014, MDE's 319(h) Grant-funded biological monitoring project has been sampling benthic macroinvertebrates and fish in selected streams within the Antietam Creek watershed. These two measures are used to gauge existing stream health on a scale of 1 to 5:

good (4.0-5.0), fair (3.0-3.9), poor (2.0-2.9), very poor (1.0-1.9) BIBI = benthic index of biological integrity FIBI = fish index of biological integrity

The following biological information was extracted from the May 2017 progress report, Project #1 Implementation of the Antietam Creek Watershed Restoration Plan.²

Project 1's objective involves collecting benthic data for a fifth year from selected stream sites in the Antietam watershed, which is currently listed on the 303(d) list of impaired waters, and has an approved TMDL for nutrients and sediments. Within areas where localized implementation projects have been approved, six benthic macroinvertebrate stations were established for long-term monitoring of sediment control projects Table 1. This effort is designed to demonstrate long-term improvement in the BIBI if sediment control projects are successful.

In 2017, six stations were sampled for benthics, Table 2. Currently all six stations are pending results for 2017. Four years of completed data (2013, 2014, 2015 and 2016) are not sufficient to interpret trends at this time.

Table 1 Station Locations Antietam Creek Watershed ¹													
Station	Stream Name	Location	Latitude	Longitude									
LAC-001-T-2015	Little Antietam Creek	Anderson Property/Soccer Field	39.68165	77.60550									
LAC-002-T-2015	Little Antietam Creek	Shank Property/farm	39.68527	77.60973									
BEAV-001-T-2015	Beaver Run	Cavetown Church Property	39.64585	77.58418									
BEAV-002-T-2015	Beaver Run	Albert Powell Hatchery	39.58767	77.64026									
LGC-001-T-2015	Little Grove Creek	Smithburg Sewage Treatment Plant	39.66398	77.58364									
LGC-002-T-2015	Little Grove Creek	mouth	39.68196	77.60606									

Table 2 Benthic Macroinvertebrate (BIBI) Pre-Implementation Results ² Antietam Creek Watershed 2011												
Station	2013	2014	2015	2016	2017							
LAC-001-T-2015	2.500	3.250	2.500	2.500	pending							
LAC-002-T-2015	3.000	3.000	2.000	2.000	pending							
BEAV-001-T-2015	3.750	2.000	2.500	2.750	pending							
BEAV-002-T-2015	2.500	2.250	1.750	2.250	pending							
LGC-001-T-2015	1.250	1.000	1.500	1.250	pending							
LGC-002-T-2015	not sampled	2.750	1.750	1.750	pending							

¹ Maryland Department of the Environment. MDE Biological Assessment for Water Quality Protection and TMDL Implementation. 319(h) Grant FFY2016 Project 5 Objective 2.

² Maryland Department of the Environment. *Q3Report MDE Biological Assessment FFY-16 GRTS#5 thru 3-30-2017*. Charles Poukish. May 8, 2017. 47 pages.

Water Quality Monitoring Before/After Plan Implementation³

MDE conducted nontidal water quality monitoring in the Antietam Creek watershed from mid 2011 thru late 2014 to gather three years of in-stream water quality data at 58 synoptic survey monitoring stations before significant watershed plan implementation occurred. The SFY16 Annual Report provides some summary information on this program.

From 2015 thru SFY17, no additional monitoring was conducted at the 58 synoptic survey monitoring stations. During this time period, it seemed unlikely that watershed plan implementation had progressed to a level that changes in water quality might be detected.

319(h) Grant: synopsis of multi-phase projects fully completed during SFY17

Beaver Creek (Antietam Creek tributary, Use III trout stream) stream restoration project (325 linear feet) on private farmland (Barr property) by Washington County Soil Conservation District.

- Total 319(h) Grant expenditure for overall project: \$255,494.63
- Phase 1: 319 FFY13 #10 \$148,930.00 expended for site survey, design and permitting, partial construction of stream restoration design.
 - Subgrant agreement executed 12/17/2013
 - Project completed 12/31/15
- Phase 2: 319 FFY15 #6 \$106,564.63 expended to complete construction the stream restoration per Phase 1 designs.
 - Subgrant agreement executed 11/2/15
 - Project completed 12/31/16

Little Antietam Creek stream restoration (2500 linear feet) and Little Grove Creek (600 linear feet) project on private farmland (Shank property and Anderson property)by Washington County Soil Conservation District.

- Total 319(h) Grant expenditure for overall project: \$512,618.43
- Phase 1: not 319-funded, completed 2011: stream fencing and buffer establishment
- Phase 2: 319 FFY11 #13 \$64,253.43: cattle water supply, septic upgrade to remove nitrogen, survey and design for stream restoration.
 - Subgrant agreement executed 1/28/14
 - Project completed 9/30/15
 - Phase 3: 319 FFY15 #7 \$448,365.00 construct the stream restoration per Phase 2 designs.
 - Subgrant agreement executed 11/2/15
 - Project completed 12/31/16

319(h) Grant: projects tracking table (next page)

³ Maryland Department of the Environment. MDE Targeted Watershed Project. 319(h) Grant FFY2016 Project 4 Objective 2.

Maryland 319 NPS Program SFY17 Annual Report Appendix B Page 4 of 8

	Antietam Creek Watershed 1994-SFY17 Completed NPS Implementation Projects - 319(h) Grant													
	Project Summary			Proje	ct Expenditur	es		Repo	Reported Pollutant Load Reduction					
Area/Lead	Name/Description	End	Grant Funding	Grant	Funds	Non Federal \$	Total \$	Nitrogen	Phosphorus	Sediment	Bacteria			
Alta/Ltau	Tranc/Dscscription	Date	Source Federal \$ State \$ Mate				i otai φ	(lb/yr)	(lb/yr)	(ton/yr)	(billion/yr)			
			319 FFY1994 #6											
		1996	319 FFY1995 #13	112,821.00										
		1998	319 FFY1996 #15	52,774.00										
		1998	319 FFY1997 #16	91,531.00				Due is sta and a st	1	·				
		1999	319 FFY1998 #17	105,337.00		Federal grant budg	et for project is	to 2012 (shaded	grav in table) we	ion from proje	or in the			
Md Dept of		2000	319 FFY1999 #12	120,360.00		presented. Expend	iture data is	watershed plan	Therefore these	reductions are	not counted			
(MDA) with		2001	319 FFY2000 #8	99,733.00		unavailable.		toward impleme	nting the watersh	ed plan. Howe	ver. available			
(MDA) with Washington	Antietam Creek Watershed Project	2002	319 FFY2001 #9	125,859.00				pollutant load re	duction data is pr	resented.	,			
County Soil		2003	319 FFY2002 #6	134,423.00				ponutuit four federion data is presented.						
Conservation		2004	319 FFY2003 #7	124,859.00										
District (SCD)		2005	319 FFY2004 #11	106,189.90		70,793.27	176,983.17							
		2007	319 FFY2004 #27	129,225.23		86,150.15	215,375.38	77,692	5,686	0	0			
		2006	319 FFY2005 #5	119,446.79		79,631.19	199,077.98	4,718	720	0	0			
			319 FFY2007 #5	139,258.68		92,839.12	232,097.80	65,216	5,862	81.2	0			
		2010	319 FFY2008 #6	155,838.12		103,892.08	259,730.20	71,239	5,553	0	0			
	MDA Antietam Creek Watershed Proj	2010	319 FFY2009 #3	151,110.82		100,740.55	251,851.37	64,590	5,067	0	0			
	Antietam Creek Watershed Plan	2012	319 FFY2008 #20	29,264.39		19,509.59	48,773.98	0	0	0	0			
	Barr Property Stream Restoration Ph1	SFY16	319 FFY13 #10	148,930.00		99,287.00	248,217.00	22.75	4.05	2.76	0			
***	Barr Property Stream Restoration Ph2	SFY17	319 FFY15 #6	\$106,564.63		\$71,043.09	\$177,607.72	23.75	4.95	2.76	0			
Washington	Kiwanis Park Stream Stabilization Ph1	SFY15	319 FFY2014 #7	124,340.97		82,893.98	207,234.95	34.2	10.3	16.75	0			
CO. SCD	Kiwanis Park Stream Stabilization Ph2	SFY16	319 FFY12 #13	39,147.90		26,098.60	65,246.50	17.1	5.15	4.15	0			
	Shank/Anderson Project Phase 2 of 3	SFY16	319 FFY11 #13	64,253.43		42,835.62	107,089.05	167.7	567	705.0	0			
	Shank/Anderson Project Phase 3 of 3	SFY17	319 FFY15 #7	448,365.00		298,910.00	747,275.00	157.7	56.7	795.0	0			
	Greensburg Rd Little Antietam Creek													
Washington	Restoration	2014	319 FFY2012 #11	229,555.73		153,037.15	382,592.88	110	37.4	85.25	0			
County		SFY16	319 FFY11 #15	95,051.72		63,367.81	261.012.50	200.0	102.0	222.50	0			
	Devils Backbone Park Stream Restoration	SFY16	319 FFY14 #8	122,035.83		81,357.22	361,812.58	300.0	102.0	232.50	0			
			TOTAL overall	3,176,276.14	0.00	1,472,386.43	3,680,965.57	284,097.8	23,104.5	1,217.61	0			
	TOTALS for projects counted toward watershed plan implementation. $1,407,509.60$ 0.00 $938,340.07$ $2,345,849.67$ 642.8 216.5 $1,136.41$ 166													
For sediment	and bacteria pollutant loads, BMPs i	nstalle	d 2012 and later can	be counted tow	vard watershed	plan implemeta	tion.	498.6	168.8	1,034.41	0.0			

	SFY17 NPS Implementation Projects In Progress - 319(h) Grant - Antietam Creek Watershed												
	Project Summary		Project Funding						Future Pollutant Load Reduction				
Amon/L and	Nome/Descentintion	End	Grant Funding	Grant Budgeted		Non Federal \$	Total \$	Nitrogen	Phosphorus	Sediment	Bacteria		
Alea/Leau	ad Name/Dsescription		Source	Federal \$	State \$	Match	Budgeted	(lb/yr)	(lb/yr)	(ton/yr)	(MPN/yr)		
Hagerstown	no projects working during SFY17												
Washington County	no projects working during SFY17												
Washington	Winder Property Phase 2 of 3	TBD	319 FFY16 #8	39,480		26,320	65,800	126.4	17.15	1,662.5	271.4 billion		
County SCD													
			TOTALS	39,480	0	26,320	65,800	126.4	17.2	1,662.5	271.4 billion		

Maryland 319 NPS Program SFY17 Annual Report Appendix B Page 5 of 8

	Antietam Creek Watershed											
2011-SFY17 Completed State Revolving Fund NPS Implementation Projects												
	Project Summary			Projec	et Expenditures				Pollutant Lo	ad Reduction		
		End		Grant	Funds		m () ¢	Nitrogen	Phosphorus	Sediment	Bacteria	
Area/Lead	Name/Description	Date	Grant Funding Source	Federal \$	State \$	Watch \$	1 otal \$	(lb/yr)	(lb/yr)	(ton/yr)	(MPN)	
Washington	Lehmans Mill Road Stream Bank Stabilization	2012	SRF Grant	0.00	191,700.00	0.00	191,700.00	101	5.35	0	0	
County	Burnside Bridge Rd Stream Bank Stabilization	2012	SRF Grant	0.00	232,900.00	0.00	232,900.00	101	5.35	0	0	
		TO	TAL for completed projects	\$0.00	\$424,600	\$0.00	\$424,600.00	202	11	0	0	
	Summ	ary of	State Revolving Fu	und Projects	Activity in S	FY16 - Antie	etam Creek V	Vatershed				
	Project Summary			Proj	ect Funding			Pro	jected Pollutar	nt Load Reduc	ction	
		End	Cront Funding Source	Grant	Funds	Match \$	Total \$	Nitrogen	Phosphorus	Sediment	Bacteria	
Aron/Lond	Nomo/Description											
Area/Lead	Name/Description	Date	Grant Funding Source	Federal \$	State \$	Match \$	I otal \$	(lb/yr)	(lb/yr)	(ton/yr)	(MPN)	

Maryland 319 NPS Program SFY17 Annual Report Appendix B Page 6 of 8

Antietam Creek Watershed Chesapeake and Atlantic Coastal Bays Trust Fund SFY 2017 NPS Implementation Project Status (1)

(1) Maryland DNR provided this data 11/30/17 and indicated it is the full extent available.

Year					Trust Fund		BMP	BMPs	Annual	Annual	Annual
Funded	PartnerCD	ProjectTitle	ProjectType	County	Dollars	Status	Units	Reported	LbsN	LbsP	TonsTSS
		Maryland Watershed Restoration Project:			1 485 00						
SFY13	Chesapeake Bay Foundation	Hidden Hollow Farm	Tree Planting Projects	Washington	1,485.00	Complete	acres	3	111.8	10.7	4.65
		Boonsboro Community Tree Planting In The			15 000 00						
SFY13	Town of Boonsboro	Park Project	Tree Planting Projects	Washington	13,000.00	Complete	acres	3.6	80.4	5.4	0.95
		Hagertown's Tree Planting and Memorial			65 850 00						
SFY14	Chesapeake Bay Trust	Blvd Greening	Tree Planting Projects	Washington	05,850.00	Complete					
		Hagertown's Tree Planting and Memorial			104 150 00						
SFY14	Chesapeake Bay Trust	Blvd Greening	Tree Planting Projects	Washington	104,130.00	Complete			11.8	0.5	0.04
		Bioretention Facility near Clean Water Circle			455 000 00						
SFY14	City of Hagerstown	(site A)	Stormwater Management	Washington	455,000.00	Complete			100.5	20.9	5.80
		Wet Swales near Hagerstown Light Dept.			45 000 00						
SFY14	FY14 City of Hagerstown	(Site B)	Stormwater Management	Washington	45,000.00	Complete			36.9	9.3	3 2.70
		Fountaindale Elementary (Washington			625.50)					
SFY14	Washington County	County Board of Education Riparian Buffers)	Tree Planting Projects	Washington		Complete	acres	0.2	5.9	0.2	0.05
		Northern Middle School (Washington County			790.62						
SEV14	Washington County	Board of Education Riparian Buffers)	Tree Planting Projects	Washington	780.02	Complete	acres	1.2	35 /	1.4	0.27
51114	washington County	Smithsburg Middle/High School Complex	Thee I failting I fojects	w asinington		Complete	acres	1.2	, 55.4	1	0.27
		(Washington County Board of Education			2 241 97	,					
SFY14	Washington County	Riparian Buffers)	Tree Planting Projects	Washington	2,541.67	Complete	acres	15	44 3	1.8	0 34
SEV15	Md Forestry Board Foundation	Klein Reforestation	Tree Planting Projects	Washington	6 539 00	Complete	acres		0.0	1.0	0.29
51 1 15	Wid Tolestry Doard Touldation		Thee Filanting Filojeets	washington	0,557.00	Complete	acres		. 0.0	1.0	0.27
	(1) Maryland DNR provided this	data 11/30/17 and indicated it is the full extent av	vailable.	TOTALS	696,771.99)			426.88	51.31	15.08
									-		
ISFY18	Md Forestry Board Foundation	Klein Reforestation	Tree Planting Projects	Washington	4.711.83	Design/Pla	nning		7.4	0.52	2 0.25

TOTALS

4,711.83

7.40

0.52

0.25

Appendix B Page 7 of 8										Prior Y	Prior Years Progress Toward Watershed Plan							
															Go	als		
Antietam Creek Watershed							Antiet	am Creek	Waters	ned Plan			Data					
In Washington County, Maryland	I						Agricultura	al BMP Im	plemen	tation G	oals		reported	Extracted from State Data reported by MDE to EPA				
SFY17 Agricultural BMP Impleme	ntatior	n [Esti	mated Pollutant	Load Reductio	n	<u>_</u>				Progress		by locals		E	say Program	n	
Agricultural Best Management Practices (1)	Unit	BMPs Reported	Nitrogen Total (lbs)	Phosphorus Total (lbs)	Sediment Total (tons)	E. coli billion/yr	Management Practice	Goal Table 14	Bacteria Goal Table 18	Units	SFY17	2012 thru SFY17	2013 Annual Report	SFY14	SFY15	SFY16		Units
Annual Practices													Report					
Cover Crops	acres	7,547	85,617.93	620.99	488.29		Cover Crops	4,000		acres/yr	7,547							
Multi-Vear Practices	acres	7-						,			1-							
Alternative Crops	acres	0																
Amendments for the Treatment of Ag Waste	AU	0																
Animal Mortality Facility	count	0																
Conservation Cover	acres	0																
Conservation Plans/SCWQP	acres	3,997	6,146.7	580	460.14		Soil Conservation WQ Plans	3,050	15,460	acres	3,997	17,297	3,956.9	2,887.0	3,015.0	3,441.0		acres
Critical Area Planting	acres	0																
Dead Bird Composting Facility	count	0																
Fencing	feet	18	1,980.9	232.1	55.15		Stream Protection Fenced	780 ac	780 ac	feet	18	36,774		8,905.0	6,160.0	21,691.0		feet
Field Border	acres	0					Grass Buffers	295	35	acres	0	3	2.5	0	0	0.0		acres
Filter Strip	acres	0								acres	0	0.8	0	0.1	0.0	0.7		acres
Grassed Waterway	acres	0.69	20.48	0.6	0.43					acres	1	2.32	0	1.0	0.0	0.6		acres
Horse Pasture Management	acres	0																
Loafing Lot Management System	acres	0.31	37.72	9.1	0.45													
Pasture & Hay Planting	acres	0																
Prescribed Grazing	acres	14.5	19.4	5.8	1.87													
P-sorbing Materials	acres	0																
Riparian Forest Buffer	acres	19.8	892.0	15.3	8.68		Riparian Forest Buffers		260	acres	20	90.3	56.8	2.5	0.0	11.2		acres
Riparian Herbaceous Cover	acres	2.3	72.12	0.6	0.42					acres	2	10.2	0	7.3	0.0	0.59		acres
Roof Runoff Structure	count	9	1,115.3	224	10.80		Runoff Control Systems		12	count	9	31	4	2	3	13.0		count
Stream Restoration Ag	feet	7,301	1,271.5	39.1	6.32		Stream Restoration			feet	7,301	7,626	0	0	0	325.0		feet
Tree/Shrub Establishment	acres	0																
Waste Storage Facility	count	0					Animal Waste Mgmt Systems		26	count	0	17	2	4	4	7		count
Wastewater Treatment Strip	acres	0																
Water Control Structure	count	0																
Watering Facility	count	17	12.48	6.7	0.73					count	17	35	0	5	8	5		count
Wetland Creation	acres	0																
Wetland Restoration	acres	0																
Windbreak/Shelterbelt Establishment	feet	0																
							Conservation Tillage	6,200		acres					-			
							Erodible Land Retirement	130		acres		0	0	0	0			acres
							Livestock Stream Crossing	1.000	17	count		0	0	0	0			count
							No-Till	4,800		acres		0	0	0	0			acres
							Stream protection no fence	1,300	1,300	acres		40	40.0	0	0			acres
								-										
Total Annual Practices (2)			85,617.9	621.0	488.3	0.0												
Total Multi-year Practices			11,568.6	1,113.3	545.0	0.0												
Total Pollutant Load Reduction			97,186.5	1,734.3	1,033.3	0.0												
(1) "SFY17 Total" column is 1/22/18 MDA data																		
(2) Annual Practices: cover crops, nutrient mgn	nt, manur	e transport,	conservation till	age & high residu	e tillage.													

Maryland 319 NPS Program SFY17 Annual Report

Appendix B Page 8 of 8													Prior Ye	ars Prog	ress Tow	ard Wate	rshed Pla	n Goals	
Antietam Creek Watershed							Antietam	Creek V	Vatersh	ed Pla	an		Dete						
In Washington County, Mary	land												reported	Extracte	ed from St	ate Data r	eported		
SFY2017 Urban BMP Implementa	tion						Urban BMF	P Impler	nentatio	on Go	als		by locals	by M	DE to EP/	A Bay Pro	gram		
<u>.</u>			Est	imated Polluta	ant Load Red	uction		Sadimont	Paotoria		Prog	ress							
Urban Best Management Practice	Unit	BMPs	Nitrogen	Phosphorus	Sediment	Bacteria	Urban Best Management	Goal	Goal	Units		2012-	2012-	1					
		Reported	lb/yr	lb/yr	tons/yr	billion/yr	Practice	Table 14	Table 18		SFY17	SFY17	2013	SFY14	SFY15	SFY16		Units	
Bioretention	acres	0																	
Bioswale	acres	0																	
Disconnection of Rofftop Runoff	acres	0																	
Dry Detention Ponds & Hydro Structures	acres	0																	
Dry Extended Detention Ponds	acres	0																	
Dry Well	acres	0																	
Filtering Practices	acres	0																	
Forest Conservation	acres	0																	
Forest Harvesting Practices	acres	0					Forest Harvest Practices	250		acres	0.00	798.0	722.0	0.0	76.0	0.0		acres	
Infiltration Practices	acres	19.69	423.34	21.66	6.24														
Permeable Pavement	acres	0																	
Rain Garden	acres	0																	
Reduction of Impervious Surface	acres																		
Riparian Forest Buffers on Urban Lands	acres																		
Septics Connections to Sewers	count																		
Septics Denitrification Critical Area	count																		
Septic Denitrification outside of 1000 ft	count	15	49.5				Soptic System Liberados		645	count	15	127	26	10	30	14		count	
Septic Denitrification within 1000 ft	count	0					Septic System Opgrades		045	count	15	137	20	17	4	21		count	
Stream Restoration Urban	feet																		
Street Sweeping	acres																		
Tree Planting	acres	18.8	186.12	2.14	19.17														
Urban Forest Buffer	acres	0																	
Wet Extended Detention	acres	0																	
Wet Ponds & Wetlands	acres	0																	
TOTAL PO	ollutant Lo	ad Reduction	658.96	23.80	25.41	0.00													
(1) "BMPs Reported" column is 1/25/18 MI	DE data.	Bacteria load r	reduction was	s not reported.															
(2) Load reductions are edge of stream est	imates ca	Iculated by MI	DE using MA	ST.															

Appendix C

Tidal Back River in Baltimore County, Maryland And Upper Back River in Baltimore County and Baltimore City, Maryland Watersheds Eligible for 319(h) Grant Implementation Funding

Contents

- C.1. Back River Small Area Watershed Plans Summary
- C.2. Tidal Back River SWAP Overview
- C.3. Upper Back River SWAP Overview
- C.4. BMP tracking/reporting
- C.5. Grant-Funded Implementation Projects
- C.6. Monitoring

C.6.a. Nontidal Water Quality – State Agencies C.6.b. Nontidal Water Quality – Baltimore Countywide C.6.c. Tidal Water Quality – State Agencies C.6.d. Nontidal Biology – Baltimore County C.6.e. Tidal Biology – Baltimore County

C.1. Back River Small Area Watershed Plans Summary

Upper Back River Watershed	Tidal Back River Watershed
Lead NPS Implementers: Baltimore County, Baltimore City	Lead NPS Implementer: Baltimore County
Other NPS implementers report progress thru the Lead.	Other NPS implementers report progress thru the Lead.
Pollutant Load Reduction Goals	Pollutant Load Reduction Goals
- Total nitrogen: 48,190 pounds	- Total nitrogen: 6,498 pounds
- Total phosphorus: 6,056 pounds	- Total phosphorus: 679 pounds
Total drainage area: 27,716.7 acres (43.3 mi ²)	Total Drainage area: 7,720 acres (12 mi ²)
- Total open tidal water: NA	- Total open tidal water: 3,947 acres (6.2 mi ²)
- Baltimore Co.: 55.5%; Baltimore City: 44.5%.	- Baltimore County: 100%
- Impervious cover: 30.7 %	- Impervious cover: 18.4%
Land Use	Land Use
- Agriculture:	- Agriculture: 4.4%
- Commercial: 9.9%	- Commercial: 7.2%
- Forest: 11.5%	- Forest: 32.1%
- Industrial: 6.5%	- Industrial: 3.5%
- Institutional: 8.0%	- Institutional: 4.4%
- Residential low density: 8.5%	- Residential low density: 2.4%
- Residential mid density: 26.5%	- Residential mid density: 23.0%
- Residential high density: 20.4%	- Residential high density: 8.6%
- Urban open: 6.2%	- Urban other: 11.4%
- Water/Wetlands:	- Water/Wetlands: 3.0%

C.2. Tidal Back River SWAP Overview

The *Tidal Back River Small Watershed Action Plan* (SWAP) was completed by Baltimore County in February 2010 and was accept by EPA in August 2010. The watershed is entirely within Baltimore County, Maryland.

Base Year for watershed plan implementation is 1998. Pollutant load reductions reported beginning that year can be counted toward meeting watershed plan goals. The watershed plan (EPA accepted 2010) in Section 1.3 pages 3 and 4 indicate that the plan's nutrient goals are from the TMDL for nitrogen and phosphorus (EPA approved 2005). The TMDL is based on water quality data collected 1992-1997. (See TMDL Section 4.1 page 18, and also Section 2.6 pages 6-17.)

Tidal Back River SWAP pollutant reduction goals (Table 3-2 on page 23) are:

- A. Nitrogen reduction goal is 6,498 pounds per year.
- B. Phosphorus reduction goal is 679 pounds per year.

Tidal Back River SWAP implementation goals (Appendix A, Table A-1) are for urban BMPs. Of these, the measurable goals are numbered: 6, 10, 12, 16, 17, 18, 19, 20, and 36. Some goals have milestone dates for reporting or progress achievement, which were reiterated in *Maryland's* 2015-2019 NPS Management Plan under Objective 5:

- . Annually: Report progress in the 319 Annual Report
- A. Assess progress for several action items
 - o 2016: #37 hot spots
 - o 2018: #10 stormwater retrofits
 - o 2019: #31 wetland plantings.

C.3. Upper Back River SWAP Overview

The Upper Back River Small Watershed Action Plan was completed by Baltimore County in November 2008 and was accept by EPA in January 2009. The watershed covered is in Baltimore City and Baltimore County, Maryland.

Pollutant reduction goals from the watershed plan Table 3-2 on page 3-8:

- B. Nitrogen reduction goal is 48,190 pounds per year.
- C. Phosphorus reduction goal is 6,056 pounds per year.
- D. Fecal bacteria reduction is a general goal in the watershed plan but there are no quantitative measures or milestones in the plan for water quality or BMP implementation. The plan notes that s consent decree is governing improvements to the sewerage system that will lead to reduced bacteria in surface waters in plan Section 1.4.1 (page 1-4), Section 2.3 (page 2-2), Section 2.9 (page 2-4), Section 3.2.7 (page 3-4) and Appendix A Table A-2 in several places.

BMP implementation goals in the Upper Back River watershed plan are in two different places:

- E. Table 3-4 and Table 3-5 on pages 3-11 and 3-12.
- F. Appendix A Table A-2.

Maryland 319 NPS Program SFY17 Annual Report Appendix C Back River Page 3 of 15

Base Year for watershed plan implementation is 1998. Pollutant load reductions reported beginning that year can be counted toward meeting watershed plan goals. The watershed plan (EPA accepted 2010) in Section 1.3 pages 3 and 4 indicate that the plan's nutrient goals are from the TMDL for nitrogen and phosphorus (EPA approved 2005). The TMDL is based on water quality data collected 1992-1997. (See TMDL Section 4.1 page 18, and also Section 2.6 pages 6-17.)

Maryland's 2015-2019 NPS Management Plan Objective 3 milestones for this watershed:

- G. Annually: Report progress in the 319 Annual Report,
- H. Assess progress for several action items in future years:
 - 2018: plan implementation progress particularly for open space tree planting, and impervious area removal on institutional land.
 - o 2019: hotspot investigation and follow-up.

C.4. BMP tracking/reporting

Urban BMPs tracking and progress reporting for the *Tidal Back River Small Watershed Action Plan* is conducted by Baltimore County. The data for watershed implementation progress and estimated pollution load reductions used in this annual report were supplied by Baltimore County. The County uses its own methods for estimating pollutant load reductions associated with the management practices that were implemented. Baltimore County's documentation on their pollutant load reduction estimation method is presented at the end of this appendix. Additional questions on the County's estimates should be directed to the County's Department of Environmental Protection & Sustainability, Watershed Management and Monitoring Section, Nathan Forand at nforand@baltimorecountymd.gov

Agricultural BMP tracking and progress reporting for the State of Maryland is conducted by the Maryland Department of Agriculture. No agricultural BMP implementation was reported during the period state fiscal year 2014 thru 2017.

C.5. Grant-Funded Implementation Projects

The following three pages present tables summarizing the status of grant-funded NPS BMP implementation from the follow grant sources:

- Tidal Back River watershed: 319(h) Grant and State Revolving Fund
- Upper Back River watershed: 319(h) Grant and State Revolving Fund
- Back River watershed overall: Chesapeake and Atlantic Coastal Bays Trust Fund

Maryland 319 NPS Program SFY17 Annual Report Appendix C Back River Page 5 of 7

	2012-SFY	717 Co	ompleted NPS Imp 319(h) Grant and	lementation l State Revo	Projects Ba lving Loan Fu	ck River Tid and (SRF)	lal Watershe	d		
	Project Summary			Proje	ct Expenditures	5		Reported	Pollutant Loa	d Reduction
Lead Name/Description End Grant Funding Source Grant Funds Match \$ Total \$ Nitrogen Phosphorus Sed										Sediment
Leau	Tranic/Description	Date	Grant Funding Source	Federal \$	State \$	Watch ¢	i otai ¢	(lb/yr)	(lb/yr)	(ton/yr)
	Pleasure Island Beach Shoreline (1)	2012	SRF Grant	\$0	\$2,717,100	\$0	\$4,285,123	1,010	53.5	0
Baltimore	Bread & Cheese Creek stream restoration & stormwater control	2013	319 FFY2010 #11	556,443	0	370,962	1,000,000	280.07	94.19	214
County	Tidal Back River Greening (2)		SRF Grant	0	385,000	0	1,500,000	441	113	24
TOTAL reported for completed projects 556,443 3,102,100 370,962 6,785,123 1,731 260.7 238										238

	SFY 2017 319(h) Grant Activity for NPS Implementation Projects - Back River Tidal Watershed											
	Project Summary			Pro	ject Funding			Future Pollutant Load Reduction				
hea I	Name (December 4) and		Crant Funding Source	Gran	t Funds	Match	Total	Nitrogen	Phosphorus	Sediment		
Leau	Name/Description	Date	Grant Funding Source	Federal	State	Match	Total	(lb/yr)	(lb/yr)	(ton/yr)		
Baltimore	No 319 or SRF projects were working											
County	during SFY17											

Footnotes:

(1) SRF records indicate this project is "a shoreline erosion control project utilizing dredged material; included maintenance dredging of the 5,000 ft long channel adjacent to the island to create the beach and to stabilize 3,100 linear feet of shoreline using a combination of stone structures and beach fill with wetland vegetation."

(2) The project involved 7 schools, 1 park & ride, 1 community center. SRF records also indicate "consists of stormwater improvements, including impervious surface removal, bioretention BMPs, reforestation, and shoreline enhancement w/wetland buffer". Total overall project cost was recalculated during design according to SRF records.

	2012-SFY	17 Co	mpleted NPS Imple 319(h) Grant and	ementation P State Revolv	rojects Bacl ⁄ing Loan Fun	k River Uppo nd (SRF)	er Watershed	1						
	Project Summary Project Expenditures Pollutant Load Reduction													
Lead Name/Description End Grant Funding Source Grant Funds Non Federal Total Nitrogen Phosphorus Sedime														
Leau	Name/Description	Date	Grant Funding Source	Federal	State	Match	Total	(lb/yr)	(lb/yr)	(ton/yr)				
	Redhouse Run/Overlea stream restoration &	2001	319 FFY2000 #16	\$130,000.00		\$86,667	\$530,000,00	52	9.46	2.67				
	stormwater control		Other		\$228,899.00		\$550,000.00	52	9.40	2.07				
Baltimore	Redhouse Run/St. Patricks stream restoration	2011	319 FFY2007 #18	\$418,500.00		\$279,000	\$883,016.00	609	32.1	5.37				
County	Upper Back River Stormwater conversions	2012	319 FFY2008 #21	\$95,883.81		\$63,923	\$159,806.35	51.7	11.5	2.06				
	No completed SRF projects are iedentified													
	TOTAL reported for completed projects \$644,383.81 \$228,899.00 \$429,589.21 \$1,572,822.35 712.7 53.1 10.1													
F	1 1 1	n. :	11. 1.1000	1		1	1.1.1.1		•					

For nitrogen and phosphorus pollutant loads, BMPs installed 1998 or later can be counted toward watershed plan implementation.

	S	FY17	' 319(h) Grant Proj	ect Activity -	- Back River U	Jpper Water	shed					
	Project Summary			Pro	ject Funding			Projected Pollutant Load Reduction				
Load	Name/Description	End	Cront Funding Source	Gran	t Funds	Non Federal	Total	Nitrogen	Phosphorus	Sediment		
Leau	Name/Description	Date	Grant Funding Source	Federal	State	Match	Totai	(lb/yr)	(lb/yr)	(ton/yr)		
Baltimore County	Herring Run/Overlook Park stream restoration & buffer planting	TBD	319 FFY2014 #9	\$358,032		\$238,688	TBD	200.5	29.6	6.75		
Baltimore City	No SRF projects were working during SFY17											

Appendix C Back River Page 7 of 7 Back River Watershed (Tidal and Upper combined) Chesapeake and Atlantic Coastal Bays Trust Fund SFY 2017 NPS Implementation Project Status (1)

Year					Trust Fund		BMP	BMPs	Annual	Annual	Annual
Funded	PartnerCD	ProjectTitle	ProjectType	County	Dollars	Status	Units	Reported	LbsN	LbsP	TonsTSS
FY10	Baltimore County DEPS	Red House Run Stream Restoration	Stream Restoration	Baltimore	186,121.00	Complete			606	32	0.0025
		Herring Run at Overlook Park Stream Restoration and	Stream Restoration		385,735.55	5 Complete			65	11	3.92
		Bread and Cheese Creek Water Quality Enhancement	Stream Restoration		193,557.00	Complete			200	30	6.7515
FY12	Baltimore County	Monitoring Water Quality Improvements at Bread and	l Monitoring	Baltimore	5,400.00	Complete			0	0	0
		Upland Tree Plantings - BWB	Tree Planting Projects		35,000.00	Complete			11.9	2.3	0.1485
		Tree Planting - BRRC	Tree Planting Projects		10,000.00	Complete			5.8	1.1	0.072
	Alliance for the Chesapeake	Trees and Environmental Education: Chinquapin Run	Tree Planting Projects		8,065.31	Complete			8.6	0.59	0.09
	Bay	Trees and Environmental Education: Northwood & K	Tree Planting Projects	Daltim and City	8,065.32	2 Complete			8	0.55	0.9
	Daulas and Daarda Farm dation	Students Restoring Urban Stream: Herring Run Park	Tree Planting Projects	Balumore City	16,305.00	Complete			6.6	0.44	0.07
FY13	Parks and People Foundation	Green Space Creation at Moravia Park Elementary (R	Stormwater Management		370,000.00	Complete			8.87	1.09	0.435
		Bread & Cheese Creek Stream Restoration	Stream Restoration		802,801.00	Complete			346.2	115.7	263.5
	Baltimore County	Upper Back River Stormwater pond implementation	Stormwater Management	Baltimore	95,883.81	Complete			371.5	56.4	10.61
		Tidal Back River Greening Project	Stormwater Management		787,388.00	Complete			441	133.2	24.13
	Chesapeake Bay Trust	Greening Watershed Neighborhoods		Baltimore	114,342.00	Complete			42.39	1.71	0.14
		Chinquapin Run Park @ Kitmore		Baltimore City	6,739.07	Complete			3.438	0.234	0.0378
		Armistead Gardens ES/MS		Baltimore City	2,994.02	Complete			1.1775	0.05	0.0085
		Baltimore IT Academy		Baltimore City	2,994.02	Complete			1.1304	0.048	0.0082
		Moravia Park ES		Baltimore City	16,847.67	Complete			7.065	0.3	0.051
	Baltimore City Recreation and	NACA Freedom and Democracy Academy		Baltimore City	8,423.84	Complete			4.239	0.18	0.0306
	Parks	Patterson HS		Baltimore City	1,682.77	Complete			0.77	0.03	0.005
		Vanguard Collegiate/Maritime Academy	Tree Diantine Drainate	Baltimore City	5,615.89	Complete			2.355	0.1	0.017
FY14		Hazelwood EMS	Tree Planting Projects	Baltimore City	8,985.42	2 Complete			3.77	0.16	0.027
		Herring Run Park @ Armistead Gardens		Baltimore City	7,300.66	6 Complete			3.72	0.25	0.041
		Herring Run Park @ Shannon & Lyndale		Baltimore City	8,199.20	Complete			4.18	0.28	0.046
		Gallery Church Baltimore		Baltimore	1,890.58	Complete			1.3188	0.0532	0.0043
	Alliance for the Chesapeake	St. Matthew's Catholic		Baltimore City	2,014.63	Complete			0.8949	0.0361	0.0029
	Бау	Faith Presbyterian, Baltimore		Baltimore City	2,975.52	Complete			1.41	0.06	0.0046
	Daltin and Country	Victory Villa ES		Baltimore	4,482.11	Complete			4.58	0.31	0.05
	Baltimore County	Villa Cresta ES		Baltimore	2,465.16	6 Complete			2.52	0.17	0.03
		Baltimore International Academy		Baltimore City	290,000.00	Complete			5.95	1.43	0.426
EV15	D1 Weter Daking and	Natural History Society of Maryland		Baltimore	270,000.00	Complete			1.53	0.38	0.112
FY15	Blue water Baltimore	St. Anthony of Padua	Stormwater Management	Baltimore City	143,160.90	Complete			2.15	0.42	0.124
		St. Pius X		Baltimore	131,184.29	Complete			3.56	0.54	0.16
	(1) Maryland DNR provided th	is data 11/30/17 and indicated it is the full extent availa	ble.	TOTALS	3,936,619.74	•			2,177.6	391.1	311.96
		Herring Run at Overlook Park Stream Restoration									

Г114	(1) Magyland DNP provided thi	and Burler Flanding Flase II			2,471,508.00	Construction		786.6	267.44	106.68	
FV1A	Baltimore County	and Buffer Planting Phase II	Stream Pestoration	Baltimore	2 471 368 00	Construction		786.6	267 44	106.68	ł

C.6. Monitoring

C.6.a. Nontidal Water Quality – State Agencies

MDE nontidal monitoring projects funded by the 319(h) Grant have operated anywhere in the Back River watershed.^{1, 2} Maryland Department of Natural Resources is not known to be monitoring Back River nontidal streams.

C.6.b. Nontidal – Water Quality Baltimore Countywide

Each year Baltimore County reports to meet their MS4 permit requirements. ³ In their report, findings from monitoring are summarized. The distribution of countywide water quality monitoring stations in Baltimore County is shown in the adjacent map.

According to the County, their Back River water quality monitoring stations are showing the following trends for pollutant concentrations (County report Figure 9-19 page 9-53): -- Nitrogen improving trendline slope = -6.0776 -- Phosphorus improving trendline slope = -0.0883 -- Sediment improving trendline slope = -10.189

Baltimore County trend monitoring sites. (County report Figure 9-21 page 9-46)

¹ Maryland Department of the Environment. MDE Targeted Watershed Project. 319(h) Grant FFY2016 Project 4. ² Maryland Department of the Environment. MDE Biological Assessment for Water Quality Protection and TMDL Implementation. 319(h) Grant FFY2016 Project 5.

³ Baltimore County. NPDES Municipal Stormwater Discharge Permit 2017 Annual Report. December 22, 2017.

Baltimore County also conducts bacteria monitoring at the stations shown in the map below. For the stations in the Herring Run tributary to Back River, the County graphed E. coli geometric mean concentrations for both annual and seasonal flow periods stratified by flow condition as shown on the following pages (County report Figures 9-61 thru 9-67, pages 9-99 thru 9-102). The County noted that samples taken in 2016 were almost completely during low flows.

Legend

- New Trend Sites
- Bacteria Monitoring Stations
 - Baltimore County/City and Carrol County

Maryland 319 NPS Program SFY17 Annual Report Appendix C Back River Page 9 of 15

The County report said that "For the second year in a row, site HER-1 met the bacterial standard for seasonal low flows, and all seasonal sampling occurred during low flow periods, thus it met the standard for all seasonal flows as well."

Maryland 319 NPS Program SFY17 Annual Report Appendix C Back River Page 10 of 15

Maryland 319 NPS Program SFY17 Annual Report Appendix C Back River Page 11 of 15

According to the County report "Site HR-B-14 also met the standard for annual low flows for the second year in a row."

Maryland 319 NPS Program SFY17 Annual Report Appendix C Back River Page 12 of 15

Maryland 319 NPS Program SFY17 Annual Report Appendix C Back River Page 13 of 15

The table below from the County report shows results of their analysis for the Herring Run watershed by station, by year and by flow regime (County report Table 9-41 page 9-103). The green shading high-lights instances that the standard was exceeded zero percent of the time.

		Ν		Percent	Single Sa	ample Ex	ceedance	(MPN)			
Site	Year	Flow T	уре	576		410		298		235	
		High	Low	High	Low	High	Low	High	Low	High	Low
	2012	0	4		0%		0%		0%		0%
	2013	1	3	100%	0%	100%	0%	100%	0%	100%	33%
HER-1	2014	1	3	100%	33%	100%	67%	100%	67%	100%	67%
	2015	1	3	100%	33%	100%	33%	100%	33%	100%	33%
	2016	0	4		0%		0%		0%		0%
	2012	1	4	0%	50%	0%	50%	0%	75%	75%	0%
	2013	1	3	0%	33%	0%	33%	0%	33%	0%	67%
Biddle	2014	1	2	100%	50%	100%	50%	100%	50%	100%	100%
	2015	1	3	100%	33%	100%	67%	100%	67%	100%	67%
	2016	0	4		75%		75%		100%		100%
	2012	1	4	0%	0%	0%	25%	0%	50%	0%	50%
	2013	1	3	0%	0%	0%	0%	0%	0%	0%	25%
Pulaski	2014	1	3	100%	33%	100%	67%	100%	100%	100%	100%
	2015	1	3	100%	33%	100%	33%	100%	67%	100%	67%
	2016	0	4		50%		50%		50%		75%
	2012										
	2013										
HR-B-12	2014										
	2015	3	7	100%	57%	100%	86%	100%	86%	100%	86%
	2016	0	10		30%		30%		30%		40%
	2012								_		
	2013										
HR-B-13	2014	2	7	1000/	0.60/	1000/	0.60/	1000/	0.60/	1000/	1000/
	2015	3	/	100%	86% 50%	100%	86%	100%	86%	100%	100%
	2010	0	10		30%		00%		80%		90%
	2012					-		-			
HR-R-14	2013										
	2014	3	7	100%	43%	100%	43%	100%	43%	100%	57%
	2015	0	10	10070	20%	10070	30%	10070	40%	10070	40%
	2012										
	2013										
HR-B-15	2014		1		1						1
	2015	3	7	100%	100%	100%	100%	100%	100%	100%	100%
	2016	0	10		80%		80%		90%		100%

The County's report indicated "These data also indicate a generally improving trend over time in the bacteria concentrations, particularly during low flow (dry weather) conditions, but since 2014 has become more variable. Site HER-1 has generally decreased, but the other sites have been more variable. The high flows also indicate improving trends, but given the limited number of samples, it is not possible to ascertain the accuracy of this trend. The trend sites added in 2015 have also shown a general decreasing trend, but this may be due to only two years of monitoring data being available for these sites."

C.6.c. Tidal Water Quality – State Agencies

The most recent assessment available from the Maryland Department of Natural Resources is presented below: ⁴

"Water quality in the tidal waters of the Back River is poor because nitrogen and sediment levels are too high. However, nitrogen and phosphorus levels have improved. Habitat quality is poor for underwater grasses due to high algal densities and poor water clarity. Summer dissolved oxygen levels in Back River are good but indicate poor habitat quality due to excessive algal densities...

In many ways, Back River water and habitat quality is the worst of all Maryland rivers. Percent developed land use in the Back River watershed is the highest (and percent agriculture is the lowest) of all Maryland rivers. Nitrogen and phosphorus levels in the water and algal densities are also the highest, and water clarity is among the worst. Sediment levels are also among the highest of the high developed watershed rivers. Even though summer bottom dissolved oxygen levels are the highest of all Maryland rivers, this is an indication of poor habitat quality due to high nutrient levels and algal densities."

C.6.d. Nontidal Biology – Baltimore County

The graph shows mean benthic index of biological integrity (BIBI) scores. (County 2017 MS4 Report Figure 9-79 page 9-135).

⁴ DNR. *Water Quality Summary 2013-2015*. Preliminary report received via personal communication from Renee Karrh 11/6/17.

C.6.e. Tidal Biology – Baltimore County

Baltimore County began biennially Tidal Benthic Random Sampling in 2013. Results are summarized below. (County 2017 MS4 Report, Figure 9-89 page 9-148)

Baltimore County 2013 - 2016 Benthic BIBI Sampling Results

Appendix D Casselman River Watershed in Garrett County, Maryland

Contents

_

- Introduction
 - Implementation, Operations and Maintenance
- Monitoring
 - Index of Biological Integrity
 - Water Quality Monitoring
- Grant-Funded Implementation Projects
 - o 319(h) Grant
 - o Chesapeake and Atlantic Coastal Bays Trust Fund
 - State Revolving Fund

Introduction

The *Casselman River Watershed Based Plan for pH Remediation* was completed by MDE in January 2011, MDE revised the plan in March 2011, and EPA accepted the plan in March 2011. The part of the watershed encompassed by the watershed plan is in Garrett County, Maryland:

- Pollution reduction goals for pH are in watershed plan Chapter 3 Section 3.2 on page 11.
- BMP implementation goals for pH are in watershed plan Chapter 5 Table 9 on page 35.
- The plan does not address nutrients or sediment. Also, The downstream portion of the Casselman River watershed in Pennsylvania is not addressed in the MDE plan.

Base Year for watershed plan implementation is 2006. Pollutant load reductions that year and thereafter can be counted toward meeting watershed plan goals. The watershed plan in Section 3.1 Section 10 indicates the plan's goal is from the pH TMDL and the TMDL model run used data thru 2005. The TMDL document also indicates that data thru 2005 was used in the TMDL model. (see TMDL Table 2-4 page 15 and Section 2.2.1 page 25.)

Responsibility to implement the plan rests with MDE's Abandoned Mine Land Division (AMLD). To help meet this responsibility, they have worked with the Maryland Department of Natural Resources, the Garrett Soil Conservation District and private property owners.

Maryland's 2015-2019 NPS Management Plan Objective 5 includes several milestones for this watershed:

- Report Annually: Report progress in the 319 Annual Report including number/percentage of pH impaired stream segments, NPS Program Success Stories and implementation progress.
- 2015 Goal is 50% for percentage of impaired stream segments in watershed that are remediated and meet the State water quality standard for pH.
 - o Status SFY17
 - Delistings: One is in the draft 2016 Integrated Report. Two are proposed.
- Report 303(d) stream segments that achieve pH criteria via Maryland's Integrated Report.

Implementation, Operations and Maintenance

During SFY17 July 2016 thru June 30, 2017:

- MDE's Abandoned Mine Land Division (AMLD) completed bidding, and construction of four additional Phase II limestone sand application sites in the fall of 2016. The last constructed four sites became operational with the addition of limestone sands in February 2017. With construction of the four new sites, this brings the total of completed projects (Phase I and II) to eighteen that are adding alkalinity to the mainstem and several tributaries of the Casselman.
- Limestone sand was applied at all 14 sites that were operational in November 2016 and again in February 2017 (a total of 81 tons @\$42.00/ton, not funded by the 319(h) Grant). It is anticipated that additional limestone sand will be applied to 18 operational sites in March 2017. (Note: The amount of sand and even the time between dumping of sand varies for each site based on the amount of precipitation, i.e., sand left from last dump, size and flow of the stream, etc.)

Monitoring

Index of Biological Integrity¹

Beginning in 2014, MDE's 319(h) Grant-funded biological monitoring project has been sampling benthic macroinvertebrates in selected streams within the Casselman River watershed. This measure are used to gauge existing stream health on a scale of 1 to 5:

good (4.0-5.0), fair (3.0-3.9), poor (2.0-2.9), very poor (1.0-1.9) BIBI = benthic index of biological integrity

The following biological information was extracted from the May 2017 progress report, Project #2 Implementation of the *Casselman River Watershed Based Plan for pH Remediation*.²

Project 2's objective is to collect benthic data within the Casselman River watershed prior to and after installation of acid mine drainage AMD treatment systems in order to determine treatment efficiency and document improvement. All benthic samples are analyzed in the MDE Field Services benthic laboratory.

This effort assessed four Phase I implementation stations from 2011 thru 2016 (Table 1). Three out of four Phase 1 sites demonstrate significant improvements in the benthic community coinciding with improvements in pH (Table 2). The fourth station CASS 008 T did not improve for unknown reasons. Two of the four sites now meet or surpass the healthy BIBI threshold of 3.0.

¹ Maryland Department of the Environment. MDE Biological Assessment for Water Quality Protection and TMDL Implementation. 319(h) Grant FFY2016 Project 5 Objective 2.

² Maryland Department of the Environment. *Q3Report MDE Biological Assessment FFY-16 GRTS#5 thru 3-30-2017*. Charles Poukish. May 8, 2017. 47 pages. [includes edits by Dennis Rasmussen received 1/8/18]

	Table 1 BIBI Sampling Stations in Casselman River Watershed												
Watershed Plan Phase	Stream Name	Location	Station Code	Latitude	Longitude								
	Big Laurel Run near West Shale Road	West Shale Road, 0.8 miles South of Germany Road	CASS 017A T	39.64881	79.13779								
Phase 1	Spiker Run	Amish Road-Bittinger Property	CASS 001 T	39.69692	79.18695								
Implementation - on public land	Kameris Creek	off Amish Road	CASS 006 T	39.67326	79.20672								
	Unnamed tributary 2 to NB Casselman R	State Land- Amish Road	CASS 008 T	39.65878	79.22273								
	Little Shade Run	Posey Row Road	LSR0013	39.70851	79.17987								
Phase 2 Implementation	Unnamed tributary to Little Laurel Run	Off West Shale Road	LLR0021	39.63430	79.15047								
on private land	Unnamed tributary to North Branch Casselman River	Leger Road at Foxtown Road	UNA0018	39.63229	79.24320								

Beginning in 2016, sampling at five Phase II stations was initiated to assess conditions before AMD treatment begins. Two of those sites (UTSCA43A and SCA0067) were dropped in 2017 because the results indicated they were biologically healthy (BIBI 4.0 and 3.75 respectively). Table 1 lists the three sampling sites that continue into 2017.

	Table 2 Phase 1 BIBI Findings Before and After Installation of pH Mitigation Casselman River Watershed												
Station BIBI Before Average Before BIBI After Average After													
Station	2011	2012	BIBI	рН	2013	2014	2015	2016	BIBI	рН			
CASS 017B T	1.750	2.750	2.250	5.0	pH	3.250	2.750	3.000	3.000	6.9			
CASS 001 T	2.500	3.250	2.875	6.6	mitigation	4.250	4.250	4.750	4.417	7.0			
CASS 006 T	2.250	2.250	2.250	5.6	installed	3.000	3.000	3.500	3.167	7.1			
CASS 008 T	2.500	2.500	2.500	4.6		2.750	2.250	2.500	2.500	6.9			

Monitoring results for Phase I sites and continuing monitoring at Phase II sites are designed to help demonstrate localized/sustained water quality improvements that are in compliance with state pH standards, and either meet or surpass the biological 303 (d) listing threshold for healthy benthic communities (IBI of 3 or greater). This monitoring plan accomplishes the "demonstrate improvement" requirement in the a-i criteria and should successfully fulfill all the requirements of a true TMDL implementation project. The design focuses on the actual stream segments impaired by acid mine discharge, which in turn, supports delisting of the 303 (d) stream segments impaired by AMD.

	Table 2 Phase 2 BIBI Findings Before and After Installation of pH Mitigation Casselman River Watershed													
Station	BIBI B	Before	Average	Before			BIBI Afte	r	Averag	e After				
Station	2016		BIBI		2016	2017			BIBI					
LSR0013	2.000		2.000		pH	2.750			2.750					
LLR0021	2.250		2.250		mitigation	2.250			2.250					
UNA0018	2.000		2.000		installed	2.000			2.000					
UTSCA43A	4.000		4.000			N/A			N/A					
SCA0067	3.750		3.750			N/A			N/A					

Water Quality Monitoring³

MDE has been conducting nontidal water quality monitoring in the Casselman River watershed from 2010 thru the date of this report. All available information for SFY2017 is presented in the table below. Monitoring at completed Phase 2 implementation sites is continuing.

Nontidal Water Quality Monitoring in the Casselman River Watershed ⁴				
Activity	2016 Jul-Sept	2016 Oct-Dec	2017 Jan-Mar	2017 Apr-June
Phase I Site Samples	27	51	Sampling ended 2016	
Phase II Site Samples	49	30	No winter samples	42

According to the most recent final report for MDE's Targeted Watershed project:

Figure 1 shows Phase I of the AMD BMP implementation to address pH impairments (sand dump platforms and leach beds) was originally scheduled to be installed in the summer of 2012. Therefore, pre-implementation monitoring was conducted in the fall of 2011 but not the summer of 2012. Due to contract and scheduling delays, the implementation was subsequently rescheduled to be installed and completed by the spring of 2013. Implementation was finally installed in July of 2013. Post Implementation Monitoring has continued since that time. From July 2015 through December of 2015, 17 sites were collected. That number decreased when sampling resumed in May 2016 through June 2016 to 9 sites. The decrease was due to the incorporation of Phase II and in the fact that we had sufficient post implementation data.

Figure 3 shows Phase II of the AMD BMP implementation was originally scheduled to be installed at all sites in the spring of 2016. Some were, but most were not. Therefore, Pre implementation monitoring began in July 2015. From July 2015 through December 2015, 10 Phase II sites were monitored monthly for the same parameters associated with Phase I. In May 2016 through June 2016 those site numbers increased from 10 to 18 to include sites further slated for remediation.

The total number of Casselman monitoring sites, both Phase I and Phase II, have remained constant at 27. The locations have changed somewhat over time as the study has evolved. Monitoring stations (CASS005, CASS006, CASS008, CASS012, CASS017, and CASS017B) had observed pH below the water quality standard of 6.5 consistently throughout the project pre-implementation monitoring period.

³ Maryland Department of the Environment. MDE Targeted Watershed Project. 319(h) Grant FFY2016 Project 4 Objective 2.

⁴ Maryland Department of the Environment. Targeted Watershed project quarterly status reports. [includes edits by Dennis Rasmussen received 1/8/18]

Figure 1. Map of Monitoring Stations for Phase I Implementation.

Figure 2. Map of Monitoring Stations for Phase II Implementation.
Grant-Funded Implementation Projects

319(h) Grant

Funding for Phase 1 implementation is completed and Phase 2 continued thru SFY16 as summarized below based on quarterly project progress reports. The status of 319 grants in this watershed and the status of implementation site construction is summarized below:

- Phase 2 implementation of the Casselman River watershed plan focused on implementing limestone sand application sites on private property. Phase 2 implementation is completed. In early SFY17 (Autumn 2016), four additional limestone sand application areas were constructed. During 2016, an additional 387 tons of limestone sand doses were added to Phase 1 and 2 sites at a cost of \$18,461.
- By the end of 2015, fourteen completed/operational treatment sites (Phase 1 and 2 sites) received 1090 tons of limestone sands at a cost of \$47,498. The amount of limestone sand and time between limestone sand dumping varied for each site and the amount of previous precipitation, i.e., sand left from last dump, size and flow of the stream, etc.

<u>Maryland's Chesapeake and Atlantic Coastal Bays Trust Fund Grant</u>: This grant had very little activity in this watershed that did not contribute to implementation the Casselman River plan.

<u>State Revolving Fund</u>: There is no record of any project in the Casselman River watershed.

	Casselman River Watershed 2006-SFY17 Completed 319(h) Grant NPS Implementation Projects												
	Project Summary			Projec	t Expendit	ures							
Area/Load	Area/Lead Name/Description End Grant Funding Grant Funds Non Federal Total												
Area/Leau	Area/Lead Name/Description Date Source Federal State Match												
	Casselman Watershed pH Plan	2011	FFY2008	\$55,000.00		\$36,666.67	\$91,666.67						
MDE	AMD pH Remediation Phase 1	2014	319 FFY09 #6	\$644,115		\$429,410	\$1,073,525						
	AMD pH Remediation GIS Tool SFY16 319 FFY11#14 \$83,619 \$55,746 \$139,365												
	TOTALS \$782,734.00 \$0.00 \$521,822.67 \$1,304,556.67												

	SFY17 319(h) Grant NPS Ir	npleme	entation Project A	Activity - Cas	sselman Ri	ver Watersh	ed				
	Project Summary			Proj	ect Fundin	g					
Ana (Look Non Federal End Grant Funding Grant Funds Non Federal Text											
Area/Leau	rea/Lead Name/Description Date Source Federal State Match										
MDE	IDE AMD pH Remediation Phase 2 TBD 319 FFY13 #5 \$401,307 \$267,538 \$668,845										

Maryland 319 NPS Program SFY17 Annual Report Appendix D Page 8 of 8

Current	Casselman pH Ir	mpairment List and	d Mitigatio	n Status									
Plan	Maryla	and Integrated Report		Statuc		MDE Implementation Monito	ring		BMPS	Status SFY17			
Shed (2)	Name	8-Digit Segment	Impairmt	Status		Location	Success Story	Project #	Site Name	Туре	Phase	Comlpete	BMP cost
						Trib 11 to NB Casselman		C14	Bowser Foxtown Road	Limestone sand	2	2014	\$11,810
NBC-1	North Branch	MD-050202040030	4a - nH	In		Trib 11 to NB Casselman		C15	Bowser Dung Hill Road	Limestone sand	2	2016	\$11,256
	Casselman River	WID 000202040000		Operation					Jones	Not going forward with pro	ect at th	is time	
									Redmond	Not going forward with pro	ect at th	is time	
	North Branch			In	CASS-3	Trib to NB Casselman	not TMDL stream	C28	Amish Rd North	Leach bed and Sand	1	2013	\$69,119
	Casselman River	MD-050202040032	4a - pH	Operation	CASS-5	Trib to NB Casselman	5 or 6 ready re TMDL	C27	Amish Rd South	Limestone sand	1	2013	\$18,460
NBC-2				oporation		NBC Casselman Mainstem		C16a	Synder - Dung Hill Rd	Limestone sand	2	2014	\$12,630
NDO-2	Alexander Run	MD-050202040032	4a - pH	In	CASS-8	Alexander Run	ready re TMDL	C22	Amish Rd - Alexander Run	Limestone sand	1	2013	\$9,605
				In									
	Tarkiln Run	MD-050202040032	4a - pH	Operation	CASS-6	Tarkiln Run	5 or 6 ready re TMDL	C25	Tarkiln Run	Limestone sand	1	2013	\$8,868
	Spiker Run	MD-050202040034	4a - pH	In	CASS-1	Spiker Run	ready re TMDL	C30	Spiker Run	Leach bed & sand	1	2013	\$71,850
MSC				In									
	Little Shade Run	MD-050202040034	4a - pH	Operation	none	Little Shade Run		C32	Yoder Posey Row Road	Limestone Sand	2	2016	\$11,071
					CASS-10	Trib 12 to SB Casselman	not TMDL stream	C53	Bear Hill Road	Leach bed	1	2013	\$78,274
SBC-1	South Branch	MD-0502020/0031	/a - nH	In	CASS-10	Trib 12 to SB Casselman		C52	Maynardier Ridge Rd W of Bear Hill	Limestone sand	1	2013	\$8,506
500-1	Casselman River	1010-030202040031	4a - pi i	Operation	CASS-11	SBC mainstem		C40	Koch - Frank Brenneman Rd	Limestone sand	2	2014	\$8,800
						UT to SBC mainstem		C43	Windy Ridge	Limestone sand	2	2016	\$10,400
					CASS-16	Trib 8A & 10 to SB Casselman	not TMDL stream	C56	Maynardier Ridge Rd	Limestone sand	1	2013	\$9,765
				In	CASS-12	UN Trib 6 (to Little Laurel Run)		C65	West Shale Rd South	Limestone sand	1	2013	\$8,526
	Little Laurel Run	MD-050202040033	4a - pH	Operation	CASS-12	UN Trib 5 (to Little Laurel Run)	submitted to EPA	C64	West Shale Rd North	Limestone sand	1	2013	\$10,294
SBC-2				Operation	CASS-12	UN Trib 4 (to Little Laurel Run)		C64a	Savage State Forest -West Shale Rd	Limestone sand	2	2016	\$11,410
									Beeman (Planning but not likely to build)	Leach bed	2		
		MD 050202040022	not listed	In	CASS-17B	UN Trib (to Big Laurel Run)		C72A	Big Laurel Run West Shale Road (add)	Limestone sand	1	2013	\$11,124
		WD-030202040033	not listed	Operation	CASS-17B	UN Trib (to Big Laurel Run)		C72	Big Laurel Run West Shale Road Siphon	Leach bed and sand	1	2013	\$111,019
CEP	Meadow Run	MD-050202040035	4a - pH	planning	none	Meadow Run @ Rt 40							

(1) Draft 2016 Integrated Report 4a - impaired, TMDL completed.(2) Watershed Plan subwatershed designations:

NBC-1 North Branch Casselman River headwaters

NBC-2 North Branch Casselman River lower reaches

SBC-1 South Branch Casselman River headwaters

SBC-2 South Branch Casselman River lower reaches

MSC Mainstem Casselman River

CEP Casselman River eastern portion

Appendix E

Corsica River Watershed in Centreville and Queen Anne's County, Maryland Watershed Eligible for 319(h) Grant Implementation Funding

Contents

- Introduction
- Milestones
- Monitoring
 - Nontidal Water Quality Monitoring Before/After Implementation
 - o Nontidal Index of Biological Integrity
 - o Tidal
- Grant-Funded Implementation Projects
 - o 319(h) Grant
 - State Revolving Fund
 - o Chesapeake and Atlantic Coastal Bays Trust Fund
- BMPs reported for agricultural and urban practices

Introduction

Centreville developed the *Corsica River Watershed Restoration Action Strategy* in 2005 with input from Queen Anne's County, Queen Anne's Soil Conservation District and others. The watershed plan (action strategy) encompasses the entire Corsica River watershed including the Town of Centreville in Queen Anne's County.

The watershed plan's pollutant reduction goals (pages 23-24) refer to the TMDL for nitrogen and phosphorus approved 5/9/2000. The TMDL document indicates that the Corsica River watershed ambient NPS nutrient loads already met the TMDL load allocation as summarized below. Therefore, the nitrogen and phosphorus TMDLs are benchmarks to prevent water quality degradation.

268,211 lb/yr = Total NPS nitrogen load, TMDL page 4 268,211 lb/yr = nitrogen TMDL load allocation, TMDL page 22 0 lb/yr = NPS nitrogen reduction goal based on TMDL

19,380 lb/yr = Total NPS phosphorus load, TMDL page 4 <u>19,380 lb/yr = phosphorus TMDL load allocation, TMDL page 22</u> 0 lb/yr = NPS phosphorus reduction goal based on TMDL

Current BMP implementation goals are in the *Corsica River Targeted Initiative Progress Report*: 2005-2011 on pages 16-17. On these pages, the table "Comprehensive Implementation Strategies for the Corsica River: 2012 to 2016" sets BMPs implementation goals that replace the goals in the 2005 watershed plan. The progress report also summarizes watershed plan implementation status thru 2011. The report is available: http://www.townofcentreville.org/departments/environment.asp

Base Year for watershed plan implementation is 2005. All stakeholders agreed that the baseline year is 2005. Also, the Corsica nutrient TMDL approved in 2000 was based on 1997 water

quality data. (See TMDL Section 2.2 pages 5-9, and the 2005 watershed plan pages 23-24.)

Milestones

Maryland's 2015-2019 NPS Management Plan Objective 5 includes two milestones for this watershed:

- Annually: Report progress in the 319 Annual Report, and
- In 2016 assess plan implementation progress and in 2017 update plan if needed. As of the end of SFY2017, the Corsica River watershed plan implementers elected to retain the existing watershed plan, as revised in 2011, with no additional updates or revisions.

Monitoring

Nontidal – Water Quality Monitoring Before/After Implementation¹

MDE has been conducting nontidal water quality monitoring in the Corsica River watershed from 2005 thru the date of this report. All available information for SFY2017 is presented in the table below.

Nontidal Water Quality Monitoring in the Corsica River Watershed ²													
Activity	2016 Jul-Sept	2016 Oct-Dec	2017 Jan-Mar	2017 Apr-June									
Composite Samples	38	34	39	33									
Weekly Grab Samples	51	36	52	48									
Synoptic Survey	0	32	0	35									

Nontidal – Index of Biological Integrity³

MDE's 319(h) Grant-funded biological monitoring project samples benthic macroinvertebrates and fish in healthy nontidal streams as part of Maryland's Tier II Antidegradation Program. These two measures serve as a gauge of existing stream health using a scale of 1 to 5:

good (4.0-5.0), fair (3.0-3.9), poor (2.0-2.9), very poor (1.0-1.9)

BIBI = benthic index of biological integrity

FIBI = fish index of biological integrity

In previously identified healthy waters within the Corsica River watershed several sites have been sampled to determine if healthy conditions are continuing. A score of 4.000 or above means Tier II healthy water criteria are continuing to be met. A lower score indicates that conditions have degraded below Maryland's Tier II healthy water criteria: ⁴

- Gravel Run 1, CORS-109-A-2017 (results not yet available)

¹ Maryland Department of the Environment. MDE Targeted Watershed Project. 319(h) Grant FFY2016 Project 4 Objective 2.

² Maryland Department of the Environment. Targeted Watershed project quarterly status reports.

³ Maryland Department of the Environment. MDE Biological Assessment for Water Quality Protection and TMDL Implementation. 319(h) Grant FFY2016 Project 5 Objective 2.

⁴ Maryland Department of the Environment. *Q3Report MDE Biological Assessment FFY-16 GRTS#5 thru 3-30-2017*. Charles Poukish. May 8, 2017. 47 pages.

- Gravel Run 124, CORS-214-A-2014
 - BIBI 4.143 on 3/13/14
 - FIBI 4.33 in 2014
- Gravel Run 125, CORS-214-A-2015 (no longer meets Tier II criteria)
 - o BIBI 1.86 on 3/21/14
 - FIBI 3.67 in 2014
- Mill Stream Branch, CORS-216-A-2016
 - o BIBI (results not yet available)
 - FIBI 4.667 on 6/30/16

All fish data analysis results for SFY2017 are presented in the table below. 5

Fish Monitoring for I	ndex of Biolo	gical Integrity	Assessme	nt in the Cor	sica River Wat	tershed
	Mill Stream E F	Branch, Station I IBI = 4.667 J	MDE-CORS une 30, 201	S-216-A-2016 6	i	
Common Name	Tolerance	Native or Introduced	Trophic Status	Lithophilic Spawner	Composition	# sampled @ Station
Least Brook Lamprey	NOTYPE	Ν	FF	Ν	В	54
American eel	NOTYPE	Ν	GE	Ν		62
Fallfish	1	Ν	GE	Υ		92
Rosyside dace	NOTYPE	Ν	IV	Υ		43
Creek chubsucker	NOTYPE	Ν	IV	Ν	R	4
White sucker	Т	Ν	OM	Y		12
Margined madtom	1	IY	IV	Ν	В	9
Chain pickerel	NOTYPE	IY	TP	Ν		3
Redfin pickerel	Т	IY	TP	Ν		12
Pirate perch	Т	Ν	IV	Ν		4
Bluegill	Т	IC	IV	Ν		6
Green sunfish	Т	IC	GE	Ν		32
Redbreast sunfish	NOTYPE	IY	GE	Ν		25
Tessellated darter	Т	Ν	IV	Ν	В	97

Tidal

The Maryland Department of Natural Resources (DNR) conducted tidal water quality monitoring in the Corsica River from 2005 thru 2016. In 2017, a monitoring hiatus was initiated. According to a recent water quality summary by Maryland DNR, Corsica River "water quality is poor because phosphorus and sediment levels are too high. Habitat quality for underwater grasses is poor because algal densities are high and water clarity is low. Summer bottom dissolved oxygen levels are good." ⁶

⁵ Maryland Department of the Environment. *Q3Report MDE Biological Assessment FFY-16 GRTS#5 thru 3-30-2017*. Charles Poukish. May 8, 2017. 47 pages.

⁶ DNR. *Water Quality Summary 2013-2015*. Preliminary report received via personal communication from Renee Karrh 11/6/17.

		Corsica River Watershed 2005-SFY17 Completed 319(h) and State Revolving Fund Grant NPS Implementation Projects										Pollutan	t Load Red	uction Prio	r to 2014	
	2005-SFY17 C	ompl	eted 319(h) and Sta	ate Revolving												
	Project Summary			Project	t Expenditure	S		Overall Po	ollutant Load	Reduction		Cover Crops	1	M	ulti-Year BM	[Ps
A rea/Lead	Name/Description	End	Grant Funding Source	Grant	Funds	Non Federal	Total	Nitrogen	Phosphorus	Sediment	Nitrogen	Phosphorus	Sediment	Nitrogen	Phosphorus	Sediment
in cu/ Leuu	Truine, Description	Date	Grant Funding Source	Federal	State	Match	Totul	(lb/yr)	(lb/yr)	(ton/yr)	(lb/yr)	(lb/yr)	(ton/yr)	(lb/yr)	(lb/yr)	(ton/yr)
	Watershed Restoration	2006	319 FFY05 #2	\$232,666.15		\$155,110.77	\$387,776.92	0	0	0				0	0	0
	Watershed Restoration	2009	319 FFY06 #3	\$241,974.82		\$161,316.55	\$403,291.37	62	6	0				62	6	0
	Watershed Restoration		319 FFY09 #1	\$270,427.25		\$180,284.83										
Centreville	Stormwater Retrofit near WWTP	2012	2 General Funds		\$60,000.00		\$520,712.08	5.33	1.05	0.29				5.33	1.05	0.29
	Banjo Lane Coastal Plain Outfall		General Funds		\$10,000.00											
	Watershed Restoration SFY16 319 FFY11 #8 278,237.30 185,491.53 463,728.83 57.93 5.29 1.11													57.93	5.29	1.11
	Watershed Restoration	SFY16	319 FFY12 #7	81,674.57		54,449.71	136,124.28	7.2	0.5	0.09				7.2	0.5	0.1
		2006	319 FFY04 #18	\$32,379.50		\$21,586.33	\$53,965.83	4,847	114	0	4,847.0	114.0	0	0.0	0.0	0
		2008	319 FFY05 #12	\$145,554.24		\$97,036.16	\$242,590.40	767	79	463	0.0	0.0	0	767.0	79.0	0
		2008	319 FFY06 #9	\$14,272.71		\$9,515.14	\$23,787.85	2,413	233	0	0.0	0.0	0	2,413.0	233.0	0
MDA / Queen		2008	319 FFY07 #6	\$22,187.16		\$14,791.44	\$36,978.60	286	10	755	0.0	0.0	0	286.0	10.0	0
Anne's Soil	Agricultural Technical Assistance	2009	319 FFY08 #7	\$50,780.00		\$33,853.33	\$84,633.33	46	3	62	0.0	0.0	0	46.0	3.0	0
Conservation	Agricultural Technical Assistance	2010	319 FFY09 #4	\$58,539.00		\$39,026.00	\$97,565.00	19,740	6,664	33	19,591.4	6,654.5	0	148.6	9.5	0
District		2011	319 FFY10 #10	\$61,590.00		\$41,060.00	\$102,650.00	53,259	802	0	52,372.3	718.2	0	886.7	83.8	0
		2012	319 FFY11 #10	\$66,700.59		\$44,467.06	\$111,167.65	45,703	642	492	45,576.0	625.0	0	127.0	17.0	0
		2013	319 FFY12 #9	\$50,999.97		\$33,999.98	\$50,000.00	55,822	828	108.6	55,821.8	748.3	0	0.0	80.1	0
		2014	319 FFY13 #9	\$47,810.49		\$31,873.66	\$79,684.15	32,831	4,394	38.28	32,830.9	4,392.8	0	0.1	1.2	0
	Corsica and Beyond	2008	319 FFY06 #13	\$124,281.44		\$82,854.29	\$207,135.73	0	0.34	0				0	0.34	0
	Bioretention Swale	2011	319 FFY08 #19	\$50,000.00		\$33,333.33	\$83,333.33	0.22	0.35	0.739				0.22	0.35	0.739
Queen Anne's	Board of Education Bioretention	2013	319 FFY11 #11	\$22,431.94		\$14,954.63	\$37,386.57	5.16	0.36	0.066				5.16	0.36	0.066
County	Board of Ed. Phase 2: Kramer Center	319 FFY12 #10	\$66,624.98		\$44,416.65	\$111,041.63	60.7	7.6	3.03				60.7	7.6	3.03	
	Bloomfield Park N. Bldg. Permeable Paving	2012	State Revolving Fund		\$200,000.00		\$250,000.00	864	173	0				864	173	0
		31	9 Projects Total Completed	\$1,919,132.11		\$1,279,421.41	\$3,233,553.56	215,912.4	13,790.9	1,957.18						
		SR	F Projects Total Completed	, , , - , -	\$200,000.00		\$250,000.00	864	173	0						
	SRF Projects Total Completed \$200,000.00 \$250,000.00 864 173 0 TOTAL 319 & SRF Projects Completed \$1,919,132.11 \$270,000.00 \$1,279,421.41 \$3,483,553.56 216,776.4 13,963.9 1,957.18 2										211,039.4	13,252.8	0	5,736.98	711.11	5.33

	SFY17 NPS Implementati	ion Pr	ojects In Progress	- 319(h) Gra	nt and State	Revolving F	und - Corsica	a River Wat	tershed	
	Project Summary			Proj	ect Funding			Projected H	Pollutant Loa	d Reduction
A read	Name/Description	End	Cront Funding Source	Grant	Funds	Non Federal	Total	Nitrogen	Phosphorus	Sediment
Alea/Leau	Name/Description	Date	Grant Funding Source	Federal	State	Match	Total	(lb/yr)	(lb/yr)	(ton/yr)
All Local	No 319 project working during SFY17									
Government	No SRF project working during SFY17									

Maryland 319 NPS Program SFY17 Annual Report Appendix E Corsica River Page 5 of 7

Corsica River Watershed Chesapeake and Atlantic Coastal Bays Trust Fund SFY17 NPS Implementation Project Status (1)

Year					TrustFund		BMP	BMPs	Annual	Annual	Annual
Funded	PartnerCD	ProjectTitle	ProjectType	County	Dollars	Status	Units	Reported	LbsN	LbsP	TonsTSS
		Education & Outreach	Education & Outreach	Queen Anne's	15,709.62	2 Complete			0.0) 0.0) 0
		Symphony Village Bioswale	Stormwater Management	Queen Anne's	17,000.00	Ocomplete			0.4	4 0.0) 0
	Corsica River Conservancy	Residential Soil Tests: 64 sites	Education & Outreach	Queen Anne's	481.16	6 Complete			0.0	0.0) 0
		Volunteer Water-Quality Program	Education & Outreach	Queen Anne's	1,213.29	Complete			0.0).0.0	0 0
		Corsica Watershed Rain Garden Initiative: 73 sites	Stormwater Management	Queen Anne's	144,027.03	8 Complete			0.0	0.0) 0
		Bloomfied Park Permable Paving	Stormwater Management	Queen Anne's	50,000.00	Ocomplete			4.(0.7	7 8E-05
FV11		QAC Office Building Stormwater Management	Stormwater Management	Queen Anne's	200,000.00	Omplete			12.0) 2.0	0.000235
1,111		Centreville WWTP Outfall Design and Permitting	Stormwater Management	Queen Anne's	30,000.00	Ocomplete			0.0	0.0) 0
		Banjo Lane Coastal Plain Outfall	Stormwater Management	Queen Anne's	30,000.00	Ocomplete			0.0	0.0) 0
	Queen Annes County	Rain Barrel Giveaway Program: 118 barrels	Stormwater Management	Queen Anne's	5,782.00	Omplete			0.0).0.0) 0
		Mill Stream Park Buffer - Phase II	Tree Planting Projects	Queen Anne's	52,470.80	Ocomplete	acres	7.3	209.7	7 14.2	2.56
		Providence Area Planting	Tree Planting Projects	Queen Anne's	23,000.90	Ocomplete	acres	3.2	91.9	9 6.2	2 1.12
		Conquest Beach Planting	Tree Planting Projects	Queen Anne's	4,528.30	Omplete	acres	0.63	18.1	1.2	0.22
		Mill Stream Park Buffer Plantings (Phase I)	Tree Planting Projects	Queen Anne's	20,000.00	Ocomplete	acres	0.7	57.4	4 3.9	0.69999999
EV12	Corsica River Conservancy	Corsica River Rain Gardens	Stormwater Management	Queen Anne's	10,000.00	Ocomplete			215.4	4 14.6	5 2.60
1112	Town of Centreville	Outfall Rehabilitation	Stream Restoration	Queen Anne's	250,000.00	Ocomplete			10.0) 2.0	0.64
	Queen Appes County	Centreville Elementary School Bioretention	Stormwater Management	Queen Anne's	50,000.00	Ocomplete			0.0).0.0	0 0
FY13	Queen Annes County	Board of Education Bioretention	Stormwater Management	Queen Anne's	62,132.00	Omplete			0.0).0.0) 0
	Town of Centreville	Pennsylvania Ave Bioswale	Stormwater Management	Queen Anne's	50,000.00	Ocomplete			12.4	4 1.0	0 0
FY14	Queen Annes County	Kennard School Planting	Tree Planting Projects	Queen Anne's	4,800.00	Ocomplete	acres	5	29.9	2.0	0.34999999
FY15	Delmarva RC & D Council	Centreville High School Stormwater Wetland	Stormwater Management	Queen Anne's	44,467.50	Ocomplete			501.0) 35.4	9.53
FY16	Delmarva RC & D Council	Conquest Wetland Restoration	Wetland Restoration	Queen Anne's	112,515.00	Ocomplete			55.5	5 32.7	1.058
	(1) Maryland DNR provided this	data 2/21/17 and indicated it is the full extent available.		TOTALS	1,178,127.60)			1,217.7	7 115.8	8 18.78
FY17	Delmarva RC & D Council	Conquest and Middle School Wetlands	Wetland Restoration	Queen Anne's	27,219.50	Design/Plan	ning		137.35	5 14.8	1.45

FY17	Delmarva RC & D Council	Conquest and Middle School Wetlands	Wetland Restoration	Queen Anne's	27,219.50	Design/Planning	137.35	14.8	1.45
	(1) Maryland DNR provided this	data 2/21/17 and indicated it is the full extent available	2.	TOTALS	27,219.50		0	0	0
	Green shading = new for SFY17								

Maryland 319 NPS Program SFY17 Annual Report Appendix E Corsica River Page 6 of 7

													Goa	S		
SFY2017 Agricultural BMP Imp	lemen	tation				Corsica Ri	ver Watersh	ed Plan			2005 2015	Extra	cted fro	m State	Data re	ported
Corsica River Watershed			Estimated I	Pollutant Loa	d Reduction	2011 Progress Rep	ort Table 1		Pro	gress	2005-2013 2013 Annual	by	MDE to	o EPA Ba	ay Progr	am
BMP Type	Unit	SFY17 Total	Nitrogen Total (Ibs)	Phosphorus Total (lbs)	Sediment Total (tons)	Management Measure	Goal	Units	SFY14-	Units	Report	SFY14	SFY15	SFY16		Units
Annual Practices									5117							
Cover Crops	acres	8,263	30,943.3	92.2	26.28	2. Agricultural Cover Crops	5500 acre/yr	acres								
Multi-Year Practices	ucres															
Alternative Crops	acres	0							0	acres		0	0	0		acres
Amendments for the Treatment of Ag Was	AU	0							0	AU		0	0	0		AU
Animal Mortality Facility	count	1	6.3	1.1	0				1	count		0	0	0		count
Conservation Cover	acres	4.5	56.2	0.4	0.46				5.7	acres		1.2	0	0		acres
Conservation Plans/SCWOP	acres	1,532	858.3	81.0	20.06				6,725	acres		1,773	1,998	1422		acres
Critical Area Planting	acres	0							0	acres		0	0	0		acres
Dead Bird Composting Facility	count	0							0	count		0	0	0		count
Fencing	feet	0							0	feet		0	0	0		feet
Field Border	acres	0							0	acres		0	0	0		acres
Filter Strip	acres	0							0	acres		0	0	0		acres
Grassed Waterway	acres	1.3	59.8	12.5	0.00				1.4	acres		0.1	0	0		acres
Horse Pasture Management	acres	0							0	acres		0	0	0	1	acres
Loafing Lot Management System	acres	0							0	acres		0	0	0		acres
Pasture & Hay Planting	acres	0							0	acres		0	0	0		acres
Prescribed Grazing	acres	4.67	1.2	0.6	0.01				4.67	acres		0	0	0		acres
P-sorbing Materials	acres	C							0	acres		0	0	0		acres
Riparian Forest Buffer	acres	4.39	160.9	2.8	0.51	1 Agricultural Duffers	150) acros	8.78	acres	04.2	0	0	4.39		acres
Riparian Herbaceous Cover	acres	4.9	225.4	47.1	0.00	1. Agricultural Bullers	150	acres	5.3	acres	94.3	0.4	0	0		acres
Roof Runoff Structure	count	0							0	count		0	0	0		count
Stream Restoration Ag	feet	0							0	feet		0	0	0		feet
Tree/Shrub Establishment	acres	0							0	acres		0	0	0		acres
Waste Storage Facility	count	0							0	count		0	0	0		count
Wastewater Treatment Strip	acres	0							0	acres		0	0	0		acres
Water Control Structure	count	0							1	count		0	1	0		count
Watering Facility	count	0							0	count		0	0	0		count
Wetland Creation	acres	0							0	acres		0	0	0		acres
Wetland Restoration	acres	0				6. Wetland Creation (all types)	20	acres	0	acres	88.3	0	0	0		acres
Windbreak/Shelterbelt Establishment	feet	0							0	feet		0	0	0		feet
						3. Nutrient Mgmt Horse Farms	5	projects								
						Agricultural BMPs (all types)	50) count			11					count
						5. Catalog all BMPs on farms	125	parcels								
						10. Easements, Land Acquisition	200	acres								
Total Annual Practices (2)			30,943.3	92.2	26.28											
Total Multi-year Practices			1,368.2	145.6	21.0											
Total Pollutant Load Reduction			32,311.4	237.9	47.3											
(1) "SFY17 Total" column is MDA data date	d 1/22/1	8. MDE u	sed MAST to es	timate pollution	load reduction											

Prior Years Progress Toward Watershed Plan

(2) The Maryland Departmant of Agriculture (MDA) defines annual practices as cover crops, nutrient mgmt, manure transport, conservation tillage & high residue tillage.

Maryland 319 NPS Program SFY17 Annual Report Appendix E Corsica River Page 7 of 7

Appendix E Corsica River Page 7 of 7	Ĩ										Prior Y	ears Pro	gress To	oward V	Natershe	d Plan Goals
SFY2017 Urb	an BMF	P Impleme	entation			Correitos Div			_			(Pro	ogress R	eport 2	005-2011	-)
Corsica	a River	Watershe	ed			Corsica Riv	er wate	ersned Plai	1		Data R	eported	Extract	ed from	State Da	ta reported by
		DMD.	Estimated	Pollutant Load	Reduction	2011 Progress Report	Table 1		Progress	5	by Lo	ocals	ME	DE to the	e EPA Ba	y Program
Urban Management Practice	Unit	BMPs Reported	Nitrogen Ib/yr	Phosphorus lb/yr	Sediment tons/yr	Urban Management Practice	Goal	Units	SFY14- SFY17	Units	2012 (count)	2013 (count)	SFY14	SFY15	SFY16	Units
Bioretention (13)	acres	0	0.00	0.00	0.00				3.8	acres	4	0	0	0	3.8	acres
Bioswale (13)	acres	0							0.0	acres			0	0	0	acres
Cisterns & Rain Barrels	acres	0				9. LID Projects rain barrels	40	count	0.0	acres	65	0	0	0	0	acres
Disconnection of Rooftop Runoff (13)	acres	0							0.0	acres			0	0	0	acres
Dry Detention Ponds & Hydro Structures (13)	acres	0							0.0	acres			0	0	0	acres
Dry Extended Detention Ponds (13)	acres	0							0.0	acres			0	0	0	acres
Dry Swale (13)	acres	0	0.00	0.00	0.00				1.4	acres			0	0	1.35	acres
Filtering Practices (13)	acres	0							0.0	acres			0	0	0	acres
Forest Conservation	acres	0							0.0	acres			0	0	0	acres
Forest Harvesting Practices	acres	0							0.0	acres			0	0	0	acres
Infiltration Practices (13)	acres	0							0.0	acres			0	0	0	acres
Permeable Pavement (13)	acres	0							0.0	acres			0	0	0	acres
Rain Garden	acres	0				9. LID Projects rain gardens	100	count	0.0	acres			0	0	0	acres
Reduction of Impervious Surface (13)	acres	0							0.0	acres			0	0	0	acres
Riparian Forest Buffers on Urban Lands (13)	acres	0							0.0	acres			0	0	0	acres
Septics Connections to Sewers	count	0							0.0	count			0	0	0	count
Septic Denitrification Critical Area	count	11	129.80						13.0	count			0	1	1	count
Septic Denitrification outside of 1000 feet	count	0				7. Retrofit Septic Systems	14	count	1.0	count			0	1	0	count
Septic Denitrification within 1000 feet	count	0	0.00						11.0	count			8	1	2	count
Septic Tank Pumpout	count	0							0.0	count			0	0	0	count
Stream Restoration Urban	feet	0				15. Stream Restoration	0.5	miles	300.0	feet			0	300	0	feet
Street Sweeping	acres	0				Street Sweeping (no goal number)	50	acres	0.0	acres			0	0	0	acres
Tree Planting	acres	0							0.0	acres			0	0	0	acres
Urban Forest Buffer (13)	acres	0							0.0	acres			0	0	0	acres
Wet Extended Detention	acres	0							0.0	acres			0	0	0	acres
Wet Ponds & Wetlands (13)	acres	0							0.0	acres			0	0	0	acres
						13. Stormwater Retrofits *	187.46	acres	0.0 0.0	acres						
TOTAL Urban BMPs Po	ollutant Lo	ad Reduction	129.80	0.00	0.00	Watershed Plan Goal #13 "Stormwater Retrof	its" aggrega	ates urban BMPs	footnoted (13).							
(1) "BMPs Reported" column data is MDE date	ed 1/25/18	B. MDE uses	s MAST to es	stimate pollutan	t load reduc	Units of measure shaded red differ from State rep	orting units									
(2) Pollutant load reduction is estimated by MD	E using N	MAST.														

Appendix F Lower Jones Falls in Baltimore City and Baltimore County, Maryland Watershed Eligible for 319(h) Grant Implementation Funding

Contents

- F.1. Lower Jones Falls SWAP Overview
- F.2. BMP tracking and reporting
- F.3. Grant-Funded Implementation Projects
- F.4. Monitoring
 - F.4.a. Water Quality State Agencies
 - F.4.b. Nontidal Water Quality Baltimore County
 - F.4.c. Nontidal Bacteria Baltimore County
 - F.4.d. Nontidal Biology Baltimore County
 - F.4.e. Tidal Biology Baltimore County

F.1. Lower Jones Falls SWAP Overview

Baltimore County completed the *Lower Jones Falls Small Watershed Action Plan* (SWAP) was in October 2008 and EPA accepted it in January 2009. The upstream portion of the watershed is in Baltimore County and the downstream portion of the watershed is in Baltimore City.

Pollutant reduction goals from the watershed plan in two locations: in the Executive Summary Table E-4 on page 9, which is essentially duplicated in Table 5.4 on page 85:

- Nitrogen: 6,498 pounds per year.
- Phosphorus: 679 pounds per year.
- Total Suspended Solids: 204.9 tons per year.
- Fecal Coliform Bacteria: 4,679,348 billion per year.

Watershed plan BMP implementation goals are in Chapter 5, in Tables 5.1 and 5-3. There are two different base years for tracking watershed plan implementation:

- 2008 for nitrogen, phosphorus and sediment. Pollutant load reductions reported that year and thereafter can be counted toward meeting watershed plan goals. The watershed plan Section 5.2 page 83 indicates that the reduction goals are based on anticipated results of the management strategy presented in the plan. Monitoring for these pollutants is not referenced as a basis for the plan and TMDLs for these pollutants were not available when the plan was written.
- 2005 for bacteria. Pollutant load reductions reported that year and thereafter can be counted toward meeting watershed plan goals. The watershed plan Section 5.2 page 83 indicates that the bacteria reduction goal is based on the TMDL. The Fecal Bacteria TMDL Section 2.2 pages 11-12 indicate that the TMDL is based on monitoring conducted 2003 and earlier.

Maryland's 2015-2019 NPS Management Plan Objective 5 lists one milestone for this watershed: annually report progress in the 319 Annual Report.

F.2. BMP tracking and reporting

The table below presents urban BMP implementation progress by the Baltimore County Department of Environmental Protection & Sustainability, Watershed Management and Monitoring Section. Additionally, the County also used their own methods for estimating pollutant load reduction that are reported elsewhere in the SFY2017 Annual Report.

	Lower	Jones Falls SWAP	Area		
Urban Management	SWAP	Units	FY09-FY16	FY17	Total
Practice	Goal		Progress	Activity	Progress
Convert Dry Ponds	NA	NA	0	0	0
Stormwater Retrofits	100	Impervious acres	1.3	0	1.3
Downspout Disconnection	250	acres	0.4	0	0.4
Street Trees	1,000	trees	0		0
Reforestation	25	acres	5.0	0.8	5.8
Stream Restoration	20,000	feet	0	0	0
Redevelopment	100	acres	0	0	0

Agricultural land uses account for less than one percent of the Lower Jones Falls watershed. The *Lower Jones Falls Small Watershed Action Plan* does not include agricultural BMP implementation goals. According to the Maryland Department of Agriculture that tracks agricultural BMP implementation statewide, no implementation of agricultural BMPs was reported in the Lower Jones Falls watershed for the period state fiscal year 2014 thru 2017.

F.3. Grant-Funded Implementation Projects

The following two pages present tables summarizing the status of grant-funded NPS BMP implementation from the follow grant sources:

- 319(h) Grant and State Revolving Fund
- Chesapeake and Atlantic Coastal Bays Trust Fund

Maryland 319 NPS Program SFY17 Annual Report Appendix F Lower Jones Falls Page 4 of 5

	Lower Jones Falls Watershed 2006-SFY17 Completed NPS Implementation Projects - 319(h) Grant and State Revolving Fund													
	Project Summary			Proje	ct Expenditures				Pollutant Lo	ad Reduction				
Amon/Lond	Nome/Description	End	Cuant Funding Source	Grant	Funds	Motoh	Total	Nitrogen	Phosphorus	Sediment	Bacteria			
Area/Lead	Name/Description	Date	Grant Funding Source Grant Funds Match Total Nitrogen (lb/yr) Phosphorus (lb/yr) Sediment (ton/yr)					(MPN)						
Baltimore City	Stony Run Stream Restoration Northern Parkway to Wyndhurst Av	2006	319 FFY03 #17	\$139,000.00	\$0	\$92,667	\$231,666.67	0	0 299 360 0					
Baltimore County	Baltimore County and Projects recorded in the contract of the													
	TOTAL for completed projects \$139,000.00 \$0 \$92,666.67 \$231,666.67 0 299 360 0													

For nitrogen, phosphorus and sediment pollutant loads, BMPs installed 2008 and later can be counted toward watershed plan implementation.

For bacteria pollutant loads, BMPs installed 2005 and later can be counted toward watershed plan implementation.

	SFY2017 NPS Implement	tation	Projects In Progre	ss - 319(h) G	rant and Sta	te Revolving	Fund - Lowe	er Jones Fa	lls Watershe	d	
	Project Summary			Proj	ject Funding				Projected Polluta	nt Load Reductio	n
Area/Load	Nome/Description	End	Crant Funding Source	Grant Funds		Match	Total	Nitrogen	Phosphorus	Sediment	Bacteria
Alea/Leau	Name/Description	Date	ate Grant Funding Source Federal State		Watch	Totai	(lb/yr)	(lb/yr)	(ton/yr)	(MPN)	
Poltimora City											
Baltimole City	No 319 or SRF projects working during SFY17										
Baltimore											
County	No 319 or SRF projects working during SFY17										

Maryland 319 NPS Program SFY17 Annual Report Appendix F Lower Jones Falls Page 5 of 5

Lower Jones Falls Watershed Chesapeake and Atlantic Coastal Bays Trust Fund SFY 2017 NPS Implementation Project Status (1)

Year					TrustFund		BMP	BMPs	Annual	Annual	Annual
Funded	PartnerCD	ProjectTitle	ProjectType	County	Dollars	Status	Units	Reported	LbsN	LbsP	TonsTSS
	Md Forestry Board Foundation	Irvine Nature Center Tree Planting	Tree Planting Projects	Baltimore	31,000.00	Complete			177	9	1.44
EV13		Druid Hill Park Bio-Filter Installation (Ren	Stormwater Management	Baltimore City	113,000.00	Complete			29.58	2.41	0.98
1113	Parks and People Foundation	Phase I: Samuel Coleridge-Taylor 507 Pres	Tree Planting Projects	Baltimore City	50,000.00	Complete			0	0	0
		Howard Dog Park	Stormwater Management	Baltimore City	51,000.00	Complete			0.99	0.16	0.061
		Mount Vernon-Belvedere Tree Pit Creation	Tree Planting Projects	Baltimore City	10,000.00	Complete			188	0.08	12.4
	Chasepeake Pay Trust	Improving Tree Health and Canopy in CRE	Tree Planting Projects	Baltimore City	184,535.00	Complete			28	1.9	0.3
	Chesapeake Bay Hust	Reservoir Hill Tree Canopy Project	Tree Planting Projects	Baltimore City	58,010.00	Complete			74.7	9.2	2.6
		Improving Tree Health and Canopy in CRE	Tree Planting Projects	Baltimore City	40,000.00	Complete			0	0	0
	Parks and People Foundation	Phase II: 507 W Preston St, Samuel Colerio	Stormwater Management	Baltimore City	431,300.56	Complete			1.83	0.13	0.145
	Daltimore City Dansation and Darks	Baltimore Polytechnic Institute	Tree Planting Projects	Baltimore City	2,036.27	Complete			0.99	0.042	0.007
	Baltimore City Recreation and Parks	Northwestern HS	Tree Planting Projects	Baltimore City	4,043.44	Complete			1.7	0.07	0.012
FY14		Saints Philip and James Parish	Tree Planting Projects	Baltimore City	810.25	Complete			0.57	0.03	0.001
		Union Baptist Church	Tree Planting Projects	Baltimore City	337.60	Complete			0.23	0.01	0.0007
		Baltimore Hebrew Congregation	Tree Planting Projects	Baltimore City	540.17	Complete			0.376	0.015	0.001
	Alliance for the Chassesslee Deer	Chizuk Amuno	Tree Planting Projects	Baltimore	1,688.02	Complete			1.1775	0.0475	0.0039
	Amance for the Chesapeake Bay	Woodbrook Baptist Church	Tree Planting Projects	Baltimore	877.77	Complete			0.6123	0.0247	0.002
		Benedictine Sisters of Baltimore Emmanue	Tree Planting Projects	Baltimore	1,688.02	Complete			1.42	0.1	0.016
		Bnos Yisroel	Tree Planting Projects	Baltimore City	4,051.24	Complete			2.826	0.114	0.0093
		Grace United Methodist Church	Tree Planting Projects	Baltimore City	2,975.52	Complete			0.75	0.038	0.0031
	Darks and Deeple Foundation	Newington Avenue Park	Stormwater Management	Baltimore City	58,459.94	Complete			0.49	0.05	0.058
	Parks and People Foundation	Sarah's Hope Phase II	Stormwater Management	Baltimore City	8,004.57	Complete			0.27	0.28	0.05
		Guilford Elementary Middle School	Stormwater Management	Baltimore City	65,000.00	Complete			0.24	0.06	0.12
FY15		Chizuk Amuno Synagogue	Stormwater Management	Baltimore	280,000.00	Complete			6.85	0.76	1.42
	Blue Water Baltimore	Jones Falls Stream Restoration (Supplemen	Stream Restoration	Baltimore	24,891.50	Complete			0	0	0
		Baltimore Hebrew Congregation	Stormwater Management	Baltimore City	159,039.73	Complete			1.11	0.13	0.24
		Shrine of the Sacred Heart	Stormwater Management	Baltimore City	46,298.90	Complete			0.36	0.03	0.058
FY16	Blue Water Baltimore	Jones Falls Stream Restoration at Falls Roa	Stream Restoration	Baltimore	600,000.00	Complete			124.54	38.96	15.33
	(1) Maryland DNR provided this data	11/30/17 and indicated it is the full extent a	available.	TOTALS	2,229,588.50				644.6	63.6	35.26
						-				· · · · · ·	
FY13	Baltimore County	Towson Run at Cloisters Stream Restoration	Stream Restoration	Baltimore	997,014.29	Construction			819.2	268	608.37
FY15	Md Assoc. of Soil Conservation Distr	Irvine Nature Center Site	Stream Restoration	Baltimore	1,951,000.00	Construction			3363	2625	850
	(1) Maryland DNR provided this data	11/30/17 and indicated it is the full extent a	available.	TOTALS	2,948,014.29				4,182.2	2,893.0	1,458.37

F.4. Monitoring

F.4.a. Water Quality – State Agencies

The Maryland Department of Natural Resources (DNR) monitoring is focused entirely on the Jones Falls' receiving waters in the Patapsco River / Inner Harbor as summarized below. The most recent information for Pataspco River tidal waters was summarized for the 2013-2015 time period by DNR. However the following summary information is excerpted from a preliminary report prior to its public availability:

- Water quality in the tidal waters of the Patapsco River is fair because nitrogen levels are too high. Phosphorus and sediment levels have improved. Habitat quality for underwater grasses is poor due to high algal densities and poor water clarity. Severe algal blooms are common in the Patapsco in the summer. Habitat quality for bottom dwelling animals is poor and has gotten worse... Patapsco River nitrogen, phosphorus and sediment levels and algal densities are low to moderate compared to other rivers, and water clarity is better than in other high developed rivers basins. However, summer bottom dissolved oxygen levels in the Patapsco River are the lowest of all rivers in Maryland and greatly degraded. ¹

Neither DNR nor MDE are conducting nontidal monitoring water quality monitoring in the Jones Falls watershed. The monitoring projects funded by the 319(h) Grant are not active in this watershed. ^{2, 3}

¹ DNR. *Water Quality Summary 2013-2015*. Preliminary report received via personal communication 11/6/17.

² Maryland Department of the Environment. MDE Targeted Watershed Project. 319(h) Grant FFY2016 Project 4. ³ Maryland Department of the Environment. MDE Biological Assessment for Water Quality Protection and TMDL Implementation. 319(h) Grant FFY2016 Project 5.

F.4.b. Nontidal – Water Quality Baltimore County

Each year Baltimore 2017 County MS4 reports to meet their MS4 permit requirements. ⁴ In their report, findings from monitoring are summarized. The distribution of countywide water quality monitoring stations in Baltimore County is shown in the adjacent map.

According to the County, their Jones Falls water quality monitoring stations are showing the following trends for pollutant concentrations (2017 County MS4 report Figure 9-19 page 9-53): -- Nitrogen slope = -1.9163 -- Phosphorus slope = -0.1146 -- Sediment slope = -7.4032 (A negative slope indicates reduced pollutant load and improving water quality)

Baltimore County trend monitoring sites. (2017 County MS4 report Figure 9-21 page 9-46)

	Jones Falls Pollutant Load Analysis, Standardized by Drainage Area Acreage, 2016														
Site	Drainage Area (ac)	TSS	Nitrate / Nitrite	Total Nitrogen	Total Phosphorus	Chloride	Sodium								
JF07	3,111.86	3.3	1.57	1.91	0.13	110.78	48.16								
JF11	7,986.54	3.9	1.64	1.94	0.13	45.26	16.21								
JF12	16,181.91	36.3	5.47	6.52	0.43	271.95	118.44								

As shown in the table above, the County also estimated pollutant loads at their three Jones Falls stations. (2017 County MS4 report, Table 9-18 page).

⁴ Baltimore County. NPDES Municipal Stormwater Discharge Permit 2017 Annual Report. December 22, 2017.

F.4.c. Nontidal Bacteria -- Baltimore County

Baltimore County also conducts bacteria monitoring at the stations shown in the map below. There are five bacteria trend monitoring sites in the Jones Falls. Three of the monitoring sites are in the city and three are in the county. The table on the next presents the number of samples and the geometric mean for high (wet) flow and low (dry) flow by year. It also presents the geometric mean of all samples by year regardless of condition. The table is stratified by annual data (includes all data collected for the year) and seasonal data (includes only those samples collected between May 1st and September 30th each year). Geometric means below the water quality standard (126 MPN) are highlighted in green. These results are displayed graphically

The County graphed E. coli geometric mean concentrations for both annual and seasonal flow periods stratified by flow condition as shown on the following pages (2017 County MS4 report Figures 9-54 thru 9-60, pages 9-90 thru 9-93). The County noted that samples taken in 2016 were almost completely during low flows.

Map: Baltimore County bacteria monitoring sites. (2017 County MS4 report Figure 9-27 page 9-56)

Legend

- New Trend Sites
- Bacteria Monitoring Stations
- Baltimore County/City and Carrol County

					Annua	ıl (MI	PN/100 ml))					
C *4	Flow		2011		2012		2013		2014		2015	2	2016
Site	Туре	Ν	MPN	N	MPN	Ν	MPN	Ν	MPN	Ν	MPN	Ν	MPN
	High	4	632	3	98	2	2,420	3	1684	3	930	1	2420
JON-1 City	Low	8	605	8	547	8	328	8	317	8	273	7	455
City	All	12	614	11	342	10	489	11	500	11	341	8	561
	High	4	173	3	32	2	24	4	442	3	840	1	980
JON-2	Low	8	46	9	283	10	28	7	55	8	30	7	45
	All	12	71	12	55	12	27	11	117	11	80	8	66
	High	4	460	3	240	2	748	4	751	3	300	1	517
JON-3	Low	8	65	9	94	10	82	8	104	8	95	8	205
	All	12	124	12	119	12	118	12	201	11	145	9	230
	High	4	716	3	449	2	2,420	4	688	3	508	1	727
JON-4	Low	8	111	9	64	10	60	8	186	8	125	8	249
	All	12	207	12	105	12	110	12	288	11	191	9	285
ION-5	High	4	973	3	200	2	2,420	4	1151	3	721	2	1414
City	Low	8	360	9	182	9	200	8	230	8	167	7	155
eny	All	12	502	12	186	11	315	12	394	11	249	9	204
	High									4	528	2	2192
JF-B-12	Low									13	284	14	275
	All									17	329	16	357
	High									4	697	2	1043
JF-B-13	Low									12	237	14	480
	All									16	310	16	529
					– . et	~	th						
		1	Sease	onal (I	May 1 st to	Septe	mber 30 th)	(MP	N/100 ml)				
Site	Flow		Sease 2011	onal (I	May 1 st to 2012	Septe	mber 30 th) 2013	(MP)	N/100 ml) 2014		2015	2	2016
Site	Flow Type	N	Sease 2011 MPN	onal (I N	May 1 st to 2012 MPN	Septe N	mber 30 th) 2013 MPN	(MP)	N/100 ml) 2014 MPN	N	2015 MPN	2 N	2016 MPN
Site	Flow Type High	N 2	Sease 2011 MPN 751	nal (I N 1	May 1 st to 2012 MPN **	Septe N	mber 30 th) 2013 MPN 2,420	(MP) N 2	N/100 ml) 2014 MPN 2420	N 1	2015 MPN 1046	2 N 0	2016 MPN
Site JON-1 City	Flow Type High Low	N 2 3	Sease 2011 MPN 751 538	nal (I N 1 4	May 1 st to 2012 MPN ** 824	Septe N 1 4	mber 30 th) 2013 2,420 283	(MP) N 2 3	N/100 ml) 2014 MPN 2420 706	N 1 3	2015 MPN 1046 161	2 N 0 4	2016 MPN 384
Site JON-1 City	Flow Type High Low All	N 2 3 5	Sease 2011 MPN 751 538 615	nal (I N 1 4 5	May 1 st to 2012 MPN ** 824 215	Septe N 1 4 5	mber 30 th) 2013 2,420 283 434	(MP) N 2 3 5	N/100 ml) 2014 MPN 2420 706 1155	N 1 3 4	2015 MPN 1046 161 257	22 N 0 4 4	2016 MPN 384 384
Site JON-1 City	Flow Type High Low All High	N 2 3 5 2	Sease 2011 MPN 751 538 615 228	nal (I N 1 4 5 1	May 1 st to 2012 MPN ** 824 215 75	Septe N 1 4 5 1	mber 30 th) 2013 MPN 2,420 283 434 63	(MP) N 2 3 5 2	N/100 ml) 2014 MPN 2420 706 1155 1087	N 1 3 4	2015 MPN 1046 161 257 1553	2 N 0 4 4 0	2016 MPN 384 384
Site JON-1 City JON-2	Flow Type High Low All High Low	N 2 3 5 2 3	Sease 2011 MPN 751 538 615 228 186	nal (I N 1 4 5 1 4 4	May 1 st to 2012 MPN ** 824 215 75 35	Septe N 1 4 5 1 4	mber 30 th) 2013 MPN 2,420 283 434 63 17	(MP) N 2 3 5 2 2 2	N/100 ml) 2014 MPN 2420 706 1155 1087 113	N 1 3 4 1 3	2015 MPN 1046 161 257 1553 30	2 N 0 4 4 0 4	2016 MPN 384 384 61
Site JON-1 City JON-2	Flow Type High Low All High Low All	N 2 3 5 2 3 5 5	Sease 2011 MPN 751 538 615 228 186 202	nal (I N 1 4 5 1 4 5	May 1 st to 2012 MPN ** 824 215 75 35 40	N 1 4 5 1 4 5 1 4 5	mber 30 th) 2013 2,420 283 434 63 17 49 770	(MP) N 2 3 5 2 2 4	N/100 ml) 2014 MPN 2420 706 1155 1087 113 351	N 1 3 4 1 3 4	2015 MPN 1046 161 257 1553 30 81	2 N 0 4 4 0 4 4 4	2016 MPN 384 384 61 61 61
Site JON-1 City JON-2	Flow Type High Low All High Low All High	N 2 3 5 2 3 5 2 2 2	Sease 2011 MPN 751 538 615 228 186 202 551	nal (1 N 1 4 5 1 4 5 1 1	May 1 st to 2012 MPN ** 824 215 75 35 40 387	N 1 4 5 1 4 5 1 4 5 1	mber 30 th) 2013 MPN 2,420 283 434 63 17 49 770	(MP) N 2 3 5 2 2 4 2 2 4 2	N/100 ml) 2014 MPN 2420 706 1155 1087 113 351 1053	N 1 3 4 1 3 4 1	2015 MPN 1046 161 257 1553 30 81 866	N 0 4 4 0 4 4 0	2016 MPN 384 384 61 61
Site JON-1 City JON-2 JON-3	Flow Type High Low All High Low All High Low	N 2 3 5 2 3 5 2 3 5 2 3 5	Sease 2011 MPN 751 538 615 228 186 202 551 377	nal (1 N 1 4 5 1 4 5 1 4 5 1 4 5 1	May 1 st to 2012 MPN ** 824 215 75 35 40 387 254	Septe N 1 4 5 1 4 5 1 4 5 1 4 5 1	mber 30 th) 2013 MPN 2,420 283 434 63 17 49 770 266	(MP) 2 3 5 2 2 4 2 3 5 5 2 2 4 5 5 2 5 5 5 5 2 5 5 5 5 5 5 5 5 5 5 5 5 5	N/100 ml) 2014 MPN 2420 706 1155 1087 113 351 1053 549	N 1 3 4 1 3 4 1 3	2015 MPN 1046 161 257 1553 30 81 866 188	N 0 4 4 0 4 4 0 4 0 4	2016 MPN 384 384 61 61 61 265
Site JON-1 City JON-2 JON-3	Flow Type High Low All High Low All High Low All	N 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 2	Sease 2011 MPN 751 538 615 228 186 202 551 377 439 2.470	nal (1 N 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5	May 1 st to 2012 MPN ** 824 215 75 35 40 387 254 277	Septe N 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4	mber 30 th) 2013 MPN 2,420 283 434 63 17 49 770 266 329	(MP) 2 3 5 2 2 4 2 3 5 2 2 4 2 3 5 2 2 4 2 3 5 2 2 2 4 2 3 5 2 2 3 5 2 2 2 3 5 2 2 3 5 2 2 3 5 2 2 3 5 2 2 3 5 2 2 3 5 2 2 3 5 2 2 3 5 2 3 5 2 2 3 5 2 2 3 5 2 2 3 5 2 2 3 5 2 2 3 5 2 2 3 5 2 2 3 5 2 2 3 5 2 2 3 5 2 2 3 5 2 2 3 5 2 2 3 5 2 2 3 5 2 2 2 3 5 2 2 3 5 2 2 3 5 2 2 3 5 2 2 2 3 3 5 2 2 2 2 3 3 5 5 2 2 3 5 5 2 2 3 5 5 5 2 2 3 5 5 5 5 2 2 3 5 5 5 5 5 2 2 3 5 5 5 5 5 5 5 2 2 3 5 5 5 5 5 5 5 5 5 5 5 5 5	N/100 ml) 2014 MPN 2420 706 1155 1087 113 351 1053 549 712	N 1 3 4 1 3 4 1 3 4	2015 MPN 1046 161 257 1553 30 81 866 188 276	N 0 4 4 0 4 4 0 4 4 0 4 4 0 4 4	2016 MPN 384 384 61 61 61 265 265
Site JON-1 City JON-2 JON-3	Flow Type High Low All High Low All High Low All High	N 2 3 5 2 3 5 2 3 5 2 3 5 2 2 3 5 2 2 2 2	Sease 2011 MPN 751 538 615 228 186 202 551 377 439 2,178	nal (1 N 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4	May 1 st to 2012 MPN ** 824 215 75 35 40 387 254 277 210 051	Septe N 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1	mber 30 th) 2013 MPN 2,420 283 434 63 17 49 770 266 329 2,420	(MP) N 2 3 5 2 2 4 2 3 5 2 2 4 2 3 5 2 2 3 5 2 2 4 2 3 5 2 2 2 4 2 3 5 2 2 2 4 2 3 5 2 2 2 3 5 2 2 2 3 5 2 2 2 3 5 2 2 2 3 5 2 2 2 3 5 2 2 3 5 2 2 2 3 5 2 2 2 3 5 2 2 2 4 4 2 2 3 5 2 2 2 2 4 2 3 5 2 2 2 4 4 2 3 5 2 2 2 4 2 2 2 3 5 2 2 2 2 2 3 5 2 2 2 2 3 5 2 2 2 2 3 3 5 5 2 2 3 5 2 2 2 2 3 5 5 2 2 2 3 5 5 2 2 2 2 3 5 5 2 2 2 3 5 2 2 2 3 5 2 2 2 3 5 2 2 2 2 2 3 5 2 2 2 2 2 3 5 2 2 2 2 2 2 2 2 2 2 2 2 2	N/100 ml) 2014 MPN 2420 706 1155 1087 113 351 1053 549 712 1365 205	N 1 3 4 1 3 4 1 3 4 1 3 4 1	2015 MPN 1046 161 257 1553 30 81 866 188 276 2420	N 0 4 4 4 0 4 4 0 4 4 0 4 4 0	2016 MPN 384 384 61 61 61 265 265 265
Site JON-1 City JON-2 JON-3 JON-4	Flow Type High Low All High Low All High Low All High	N 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 5	Sease 2011 MPN 751 538 615 228 186 202 551 377 439 2,178 869 4,255	nal (1 N 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5	May 1 st to 2012 MPN ** 824 215 75 35 40 387 254 254 277 210 251 242	Septe N 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5	mber 30 th) 2013 MPN 2,420 283 434 63 17 49 770 266 329 2,420 152	(MP) N 2 3 5 2 4 2 3 5 2 3 5 2 3 5 5 2 3 5 5 5 5 2 2 3 5 5 5 5 5 5 5 5 5 5 5 5 5	N/100 ml) 2014 MPN 2420 706 1155 1087 113 351 1053 549 712 1365 305	N 1 3 4 1 3 4 1 3 4 1 3 4 1 3 4	2015 MPN 1046 161 257 1553 30 81 866 188 276 2420 295	N 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4	2016 MPN 384 384 61 61 61 265 265 265 265
Site JON-1 City JON-2 JON-3 JON-4	Flow Type High Low All High Low All High Low All High Low All	N 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 2 2 3 5 2 3 5 2 3 5 2 3 5 5 2 3 5 5 2 3 5 5 2 3 5 5 2 3 5 5 5 5	Sease 2011 MPN 751 538 615 228 186 202 551 377 439 2,178 869 1,255 772	nal (1 N 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5	May 1 st to 2012 MPN ** 824 215 75 35 40 387 254 254 277 210 251 242 460	Septe N 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5	mber 30 th) 2013 MPN 2,420 283 434 63 17 49 770 266 329 2,420 152 684 2,420	(MP) 2 3 5 2 2 4 2 3 5 2 3 5 2 3 5 2 3 5 2 2 3 5 2 2 3 5 2 2 3 5 2 2 3 5 2 2 3 5 5 2 2 3 5 5 2 2 3 5 5 2 2 3 5 5 2 2 3 5 5 2 2 3 5 5 2 2 3 5 5 2 2 3 5 5 2 2 3 5 5 2 2 3 5 5 2 2 3 5 5 2 2 3 5 5 2 2 3 5 5 5 2 2 3 5 5 5 2 2 3 5 5 5 2 2 3 5 5 5 2 2 3 5 5 5 2 2 3 5 5 5 5 2 2 3 5 5 5 2 2 3 5 5 5 2 2 3 5 5 2 2 3 5 5 5 2 2 3 5 5 5 2 2 3 5 5 2 3 5 5 2 3 5 5 5 5 2 3 5 5 5 5 2 3 5 5 5 5 2 3 5 5 5 5 5 5 5 5 5 5 5 5 5	N/100 ml) 2014 MPN 2420 706 1155 1087 113 351 1053 549 712 1365 305 555 4772	N 1 3 4 1 3 4 1 3 4 1 3 4 1 3 4	2015 MPN 1046 161 257 1553 30 81 866 188 276 2420 295 500	N 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0	2016 MPN 384 384 61 61 61 265 265 265 265 354 354
Site JON-1 City JON-2 JON-3 JON-4 JON-5	Flow Type High Low All High Low All High Low All High Low All High	N 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 2 2 3 5 2 2 3 5 2 2 3 5 2 2 3 5 2 2 3 5 5 2 2 3 5 5 2 3 5 5 2 2 3 5 5 2 2 3 5 5 5 2 2 3 5 5 5 5	Sease 2011 MPN 751 538 615 228 186 202 551 377 439 2,178 869 1,255 773 2,773	nal (1 N 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4	May 1 st to 2012 MPN ** 824 215 75 35 40 387 254 277 210 251 242 166 22	Septe N 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4	mber 30 th) 2013 MPN 2,420 283 434 63 17 49 770 266 329 2,420 152 684 2,420	(MP) N 2 3 5 2 2 4 2 3 5 2 3 5 2 3 5 2 3 5 2 2 3 5 2 2 2 4 2 3 5 2 2 2 4 2 3 5 2 2 2 2 3 5 2 2 2 2 3 5 2 2 2 3 5 5 2 2 2 2 3 5 5 2 2 2 3 5 5 2 2 2 3 5 5 2 2 2 3 5 5 2 2 2 3 5 5 2 2 2 3 5 5 2 2 2 3 5 5 2 2 2 3 5 5 2 2 2 3 5 5 2 2 2 3 5 5 2 2 2 3 5 5 2 2 3 5 5 2 2 3 5 2 2 3 5 2 3 5 2 2 3 5 2 2 3 5 2 2 3 5 2 2 3 5 2 2 3 5 2 2 3 5 2 2 3 5 2 2 3 5 2 2 3 5 2 2 3 5 2 2 2 3 5 2 2 2 3 5 2 2 2 3 5 2 2 2 2 3 5 2 2 2 2 2 2 2 2 2 2 2 2 2	N/100 ml) 2014 MPN 2420 706 1155 1087 113 351 1053 549 712 1365 305 555 1773 270	N 1 3 4 1 3 4 1 3 4 1 3 4 1 3 4 1 2	2015 MPN 1046 161 257 1553 30 81 866 188 276 2420 295 500 1414 270	N 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4	2016 MPN 384 384 61 61 61 265 265 265 354 354 354
Site JON-1 City JON-2 JON-3 JON-4 JON-5 City	Flow Type High Low All High Low All High Low All High Low All High	N 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 5 2 3 5 5 5 5	Sease 2011 MPN 751 538 615 228 186 202 551 377 439 2,178 869 1,255 773 275 416	nal (1 N 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5	May 1 st to 2012 MPN ** 824 215 75 35 40 387 254 277 210 251 242 166 93 105	Septe N 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5	mber 30 th) 2013 MPN 2,420 283 434 63 17 49 770 266 329 2,420 152 684 2,420 479 662	(MP) N 2 3 5 2 2 4 2 3 5 2 3 5 2 3 5 2 3 5 5 2 3 5 5 2 3 5 5 5 5 2 2 3 5 5 5 5 5 5 5 5 5 5 5 5 5	N/100 ml) 2014 MPN 2420 706 1155 1087 113 351 1053 549 712 1365 305 555 1773 372 605	N 1 3 4 1 3 4 1 3 4 1 3 4 1 3 4 1 3 4 1 3 4	2015 MPN 1046 161 257 1553 30 81 866 188 276 2420 295 500 1414 376 524	N 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4	2016 MPN 384 384 61 61 61 265 265 265 354 354 354 354 205 205
Site JON-1 City JON-2 JON-3 JON-4 JON-5 City	Flow Type High Low All High Low All High Low All High Low All High Low All	N 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 5 2 3 5 5 5 5	Sease 2011 MPN 751 538 615 228 186 202 551 377 439 2,178 869 1,255 773 275 416	nal (1 N 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5	May 1 st to 2012 MPN ** 824 215 75 35 40 387 254 277 210 251 242 166 93 105	Septe N 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5	mber 30 th) 2013 MPN 2,420 283 434 63 17 49 770 266 329 2,420 152 684 2,420 479 662	(MP) N 2 3 5 2 2 4 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 5 2 2 3 5 5 2 2 3 5 5 2 2 3 5 5 2 2 3 5 5 2 2 3 5 5 2 2 3 5 5 5 2 2 3 5 5 5 2 2 3 5 5 2 2 3 5 5 2 2 3 5 5 2 2 3 5 5 2 2 3 5 5 5 2 3 5 5 5 5 5 5 5 5 5 5 5 5 5	N/100 ml) 2014 MPN 2420 706 1155 1087 113 351 1053 549 712 1365 305 555 1773 372 695	N 1 3 4 1 3 4 1 3 4 1 3 4 1 3 4 2	2015 MPN 1046 161 257 1553 30 81 866 188 276 2420 295 500 1414 376 524	N 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0	2016 MPN 384 384 61 61 61 265 265 265 354 354 354 354 205 205
Site JON-1 City JON-2 JON-2 JON-3 JON-4 JON-5 City	Flow Type High Low All High Low All High Low All High Low All High Low All High	N 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 5 2 3 5 5 5 2 3 5 5 2 3 5 5 5 5	Sease 2011 MPN 751 538 615 228 186 202 551 377 439 2,178 869 1,255 773 275 416	nal (1 N 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5	May 1 st to 2012 MPN ** 824 215 75 35 40 387 254 277 210 251 242 166 93 105	Septe N 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5	mber 30 th) 2013 MPN 2,420 283 434 63 17 49 770 266 329 2,420 152 684 2,420 479 662	(MP) 2 3 5 2 4 2 4 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 5 2 3 5 5 2 2 3 5 5 5 2 2 3 5 5 5 2 2 3 5 5 2 2 3 5 5 2 2 3 5 5 2 2 3 5 5 2 3 5 5 2 3 5 5 2 3 5 5 2 3 5 5 2 3 5 5 2 3 5 5 2 3 5 5 2 3 5 5 5 2 3 5 5 5 2 3 5 5 2 3 5 5 2 3 5 5 5 2 3 5 5 5 5 5 5 5 5 5 5 5 5 5	N/100 ml) 2014 MPN 2420 706 1155 1087 113 351 1053 549 712 1365 305 555 1773 372 695	N 1 3 4 1 3 4 1 3 4 1 3 4 1 3 4 1 3 4 2 8	2015 MPN 1046 161 257 1553 30 81 866 188 276 2420 295 500 1414 376 524 1000 237	N 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 10	2016 MPN 384 384 384 61 61 61 265 265 265 265 354 354 354 354 205 205
Site JON-1 City JON-2 JON-3 JON-3 JON-4 JON-5 City JF-B-12	Flow Type High Low All High Low All High Low All High Low All High Low All High	N 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 5 2 3 5 5 2 3 5 5 2 3 5 5 2 3 5 5 5 2 3 5 5 5 5	Sease 2011 MPN 751 538 615 228 186 202 551 377 439 2,178 869 1,255 773 275 416	nal (1 N 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5	May 1 st to 2012 MPN ** 824 215 75 35 40 387 254 254 277 210 251 242 166 93 105	Septe N 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 1 4 5 1 1 4 5 1 1 4 5 1 1 4 5 5 1 1 4 5 5 1 1 4 5 5 1 1 4 5 5 1 1 4 5 5 1 1 4 5 5 1 1 1 4 5 5 1 1 1 1	mber 30 th) 2013 MPN 2,420 283 434 63 17 49 770 266 329 2,420 152 684 2,420 479 662	(MP) 2 3 5 2 4 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 5 2 2 3 5 5 2 2 3 5 5 2 2 3 5 5 2 2 3 5 5 2 2 3 5 5 5 2 2 3 5 5 5 2 2 3 5 5 5 2 2 3 5 5 5 2 2 3 5 5 5 2 2 3 5 5 5 2 3 5 5 5 5 5 5 5 5 5 5 5 5 5	N/100 ml) 2014 MPN 2420 706 1155 1087 113 351 1053 549 712 1365 305 555 1773 372 695	N 1 3 4 1 3 4 1 3 4 1 3 4 1 3 4 1 3 4 2 8 10	2015 MPN 1046 161 257 1553 30 81 866 188 276 2420 295 500 1414 376 524 1000 337	2 N 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 10	2016 MPN 384 384 384 61 61 61 265 265 265 265 265 265 265 205 205 205 205
Site JON-1 City JON-2 JON-2 JON-3 JON-4 JON-5 City JF-B-12	Flow Type High Low All High Low All High Low All High Low All High Low All High Low All High	N 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 5 2 3 5 5 2 3 5 5 2 3 5 5 2 3 5 5 2 3 5 5 5 5	Sease 2011 MPN 751 538 615 228 186 202 551 377 439 2,178 869 1,255 773 275 416	nal (1 N 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5	May 1 st to 2012 MPN ** 824 215 75 35 40 387 254 254 277 210 251 242 166 93 105	Septe N 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5	mber 30 th) 2013 MPN 2,420 283 434 63 17 49 770 266 329 2,420 152 684 2,420 479 662	(MP) N 2 3 5 2 4 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 2 2 3 5 5 2 2 3 5 5 2 2 3 5 5 2 2 3 5 5 2 2 3 5 5 2 2 3 5 5 2 2 3 5 5 5 2 2 3 5 5 5 2 2 3 5 5 5 2 2 3 5 5 5 2 2 3 5 5 5 2 2 3 5 5 5 2 2 3 5 5 5 2 2 3 5 5 5 2 2 3 5 5 2 2 3 5 5 5 2 2 3 5 5 5 2 3 5 5 5 2 2 3 5 5 5 2 2 3 5 5 5 5 2 3 5 5 5 5 5 5 5 5 5 5 5 5 5	N/100 ml) 2014 MPN 2420 706 1155 1087 113 351 1053 549 712 1365 305 555 1773 372 695	N 1 3 4 1 3 1 4 1 3 1 1 3 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1	2015 MPN 1046 161 257 1553 30 81 866 188 276 2420 295 500 1414 376 524 1000 337 419 697	N 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 10 10	2016 MPN 384 384 61 61 61 265 265 265 265 265 265 265 205 205 205 205 205 205
Site JON-1 City JON-2 JON-2 JON-3 JON-4 JON-5 City JF-B-12	Flow Type High Low All High Low All High Low All High Low All High Low All High Low All High	N 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 5 2 3 5 5 2 3 5 5 2 3 5 5 2 3 5 5 5 2 3 5 5 5 2 3 5 5 5 5	Sease 2011 MPN 751 538 615 228 186 202 551 377 439 2,178 869 1,255 773 275 416	nal (1 N 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5	May 1 st to 2012 MPN ** 824 215 75 35 40 387 254 277 210 251 242 166 93 105	Septe N 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5	mber 30 th) 2013 MPN 2,420 283 434 63 17 49 770 266 329 2,420 152 684 2,420 479 662	(MP) N 2 3 5 2 2 4 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 2 2 3 5 2 2 3 5 2 2 3 5 2 2 3 5 5 2 2 3 5 5 2 2 3 5 5 2 2 3 5 5 2 2 3 5 5 2 2 3 5 5 2 2 3 5 5 2 2 3 5 5 2 3 5 5 2 3 5 5 2 3 5 5 2 3 5 5 2 3 5 5 2 3 5 5 2 3 5 5 2 3 5 5 2 3 5 5 2 3 5 5 2 3 5 5 2 3 5 5 2 3 5 5 2 3 5 5 5 2 3 5 5 5 5 5 5 5 5 5 5 5 5 5	N/100 ml) 2014 MPN 2420 706 1155 1087 113 351 1053 549 712 1365 305 555 1773 372 695	N 1 3 4 2 8 1 1 3 4 2 8 1 1 3 4 2 8 1 1 3 4 2 8 1 2 8 1 2 8 1 2 8 1 2 8 1 2 8 1 2 8 1 2 8 1 2 8 1 2 8 1 2 8 8 1 1 2 8 8 1 1 2 8 8 1 1 2 8 8 1 1 2 8 8 1 1 1 1 1 1 1 1 1 1 1 1 1	2015 MPN 1046 161 257 1553 30 81 866 188 276 2420 295 500 1414 376 524 1000 337 419 687 295	2 N 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 10 10 10	2016 MPN 384 384 61 61 265 265 265 265 265 265 205 205 205 205 359 359
Site JON-1 City JON-2 JON-3 JON-3 JON-4 JON-5 City JF-B-12 JF-B-13	Flow Type High Low All High Low All High Low All High Low All High Low All High Low All High	N 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 5 2 3 5 5 2 3 5 5 2 3 5 5 2 3 5 5 2 3 5 5 5 2 3 5 5 5 5	Sease 2011 MPN 751 538 615 228 186 202 551 377 439 2,178 869 1,255 773 275 416	nal (1 N 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5	May 1 st to 2012 MPN ** 824 215 75 35 40 387 254 277 210 251 242 166 93 105	Septe N 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5	mber 30 th) 2013 MPN 2,420 283 434 63 17 49 770 266 329 2,420 152 684 2,420 479 662	(MP) N 2 3 5 2 4 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 5 2 3 5 5 2 2 3 5 5 5 2 3 5 5 2 3 5 5 5 2 3 5 5 5 5 2 3 5 5 5 5 5 5 5 5 5 5 5 5 5	N/100 ml) 2014 MPN 2420 706 1155 1087 113 351 1053 549 712 1365 305 555 1773 372 695	N 1 3 4 1 3 1 4 1 3 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1	2015 MPN 1046 161 257 1553 30 81 866 188 276 2420 295 500 1414 376 524 1000 337 419 687 295 250	2 N 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 10 10 10	2016 MPN 384 384 61 61 265 265 265 265 354 354 205 205 205 205 359 359 359

Jones Falls E. coli Results on an Annual and Seasonal Basis (County 2017 MS4 Report Table 9-37 page 9-89)

Maryland 319 NPS Program SFY17 Annual Report Appendix F Lower Jones Falls Page 9 of 15

JON-1: County analysis indicates conditions are worsening at this station based on comparing MDE sampling in 2002-2003 and later county sampling.

JON-2: County analysis indicates an improvement at this station based on comparing MDE sampling in 2002-2003 and later county sampling.

JON-3: County analysis indicates an improvement at this station based on comparing MDE sampling in 2002-2003 and later county sampling.

JON-4: County analysis indicates an improvement at this station based on comparing MDE sampling in 2002-2003 and later county sampling.

Maryland 319 NPS Program SFY17 Annual Report Appendix F Lower Jones Falls Page 11 of 15

JON-4: County analysis indicates significant improvement at this station based on comparing MDE sampling in 2002-2003 and later county sampling.

JF-B-12: County analysis over the two years of sampling indicates that the geometric means for most flow regimes have stayed approximately the same.

JF-B-13: County analysis over the two years of sampling indicates that the geometric means for most flow regimes have increased.

F.4.d. Nontidal Biology – Baltimore County

One the five biological monitoring programs conducted by Baltimore County is to assess ecological health of stream using a probabilistic monitoring approach in freshwater and tidal waters using the Maryland Biological Stream Survey protocol. County-wide fifty randomly selected sites are monitored annually. Baltimore County visits its 319 priority watersheds every other year. The MBSS system is used to rank the conditions observed as summarized in the two graphs below (Very Poor = 1.00 thru 1.99, Poor = 2.00 thru 2.99, Fair = 3.00 thru 3.99, Good = 4.00 thru 4.99):

Means and one standard deviation of BIBI scores between 2003 and 2015 (2017 County MS4 report page 9-129)

BIBI rolling averages for probabilistic monitoring sites between 2003 and 2015. (2017 County MS4 report page 9-133)

F.4.e. Tidal Biology – Baltimore County

Since 2013 Baltimore County has conducted random tidal benthic sampling using the Chesapeake Bay Benthic Index of Biological Integrity. County reporting did not indicate that the tidal receiving waters of the Jones Falls was part of this program (2017 County MS4 report page 9-148).

Appendix G

Lower Monocacy River Watershed in Frederick County, Maryland Watershed Eligible for 319(h) Grant Implementation Funding

Contents

- Introduction
- Milestones
- Water Quality
 - State Agency information
 - Frederick County MS4 Permit Reporting
- Grant-Funded Implementation Projects
 - o 319(h) Grant
 - o State Revolving Fund
 - o Chesapeake and Atlantic Coastal Bays Trust Fund
- BMPs reported for agricultural and urban practices

Introduction

The *Lower Monocacy River Watershed Restoration Action Strategy Supplement* was completed by Frederick County in July 2008 and EPA accepted the plan 7/30/2008. The part of the watershed encompassed by the watershed plan is the Frederick County portion of the watershed. (Small upstream portions of the watershed are in Carroll and Montgomery Counties, Maryland.)

Total pollutant reduction goals over 25 years are on watershed plan page 11:

- Nitrogen 649,998 pounds,
- Phosphorus 68,952 pounds,
- Sediment/total suspended solids 10,345 U.S. short tons.

Additional specific goals are:

- Pollutant load reduction for agricultural BMPs (Table J) and urban BMPs (Table K)
- Agricultural BMP implementation goals: Table R on page 22.
- Urban BMP implementation goals: Table T on page 25.

Base Year for watershed plan implementation is 2003. Pollutant load reductions that year and thereafter can be counted toward meeting watershed plan goals. The TMDL for Lake Linganore phosphorus and sediment in Section 2.2 page 5 indicates that monitoring data used for the TMDL was collected in 2002. The 2008 Lower Monocacy watershed plan goals for nitrogen, phosphorus and sediment reduction are based on Tributary Strategy goals and County calculations. The 2008 plan does not address more recent TMDLs.

Milestones

Maryland's 2015-2019 NPS Management Plan Obj. 5 has two milestones for this watershed:

- Annually: Report progress in the 319 Annual Report, and
- In 2018 assess plan implementation progress and in 2019 update plan if needed.

Water Quality

State Agency Information

According to Maryland DNR¹, measured nitrogen levels decreased in the Monocacy River and Seneca Creek. Catoctin Creek nitrogen levels decreased when changes in river flow are accounted for. Measured phosphorus levels decreased at most of the stations in the Middle Potomac, but the trends were not significant when the effect of changes in river flow is accounted for. Only one station in Catoctin Creek has a significant decrease in sediment levels.

MDE nontidal monitoring projects funded by the 319(h) Grant have not been active in the Lower Monocacy River watershed. ^{2, 3}

Frederick County MS4 Permit Reporting

To meet requirements of its municipal separate sewer system (MS4) permit, Frederick County is monitoring Peter Pan Run, which is tributary to Bush Creek and the Lower Monocacy River. According to the most recent report 4 :

- Monitoring in Peter Pan Run is designed to build a long-term database of water quality and biological conditions and to assess the cumulative effects of restoration projects in the watershed. The program was initiated in 1999 to monitor and assess the effects of stormwater runoff from development in the watershed.
- May 1999 monitoring established the baseline pre-construction conditions within the Peter Pan Run watershed. That year construction began on a planned unit development (PUD), which is now a 3,500 residential unit, mixed-use development that also includes substantial commercial and office space. Construction on the PUD is continuing to add 200 to 300 residential units annually.
- The long term monitoring program involves monitoring flow volumes and water quality from both in-stream and SWM pond outfall stations. It includes monitoring physical and biological conditions at four permanent stations.
- Frederick County's SWM database for this watershed lists:
 - o 21 extended detention dry ponds and 10 extended detention wet ponds
 - o 5 combination sand filter and extended detention ponds
 - 3 sand filters, 2 infiltration trenches and 1 wet pond
 - 2 constructed swallow marshes and 1 reforestation of urban land on 0.25 acres

The following pages show water quality trend information extracted from the Versar report. Variation over time shown is affected by precipitation patterns:

- Very wet years: WYs 2001, 2002, 2009, 2015, 2016, 2017.
- Very dry years: WYs 2003, 2010, 2011, 2013, 2014.

¹ DNR. *Water Quality Summary 2013-2015*. Preliminary report received via personal communication 11/6/17.

² Maryland Department of the Environment. MDE Targeted Watershed Project. 319(h) Grant FFY2016 Project 4.

³ Maryland Department of the Environment. MDE Biological Assessment for Water Quality Protection and TMDL Implementation. 319(h) Grant FFY2016 Project 5.

⁴ Versar, Inc. Frederick County Assessment of Controls: Peter Pan Run Monitoring July 2016 – June 2017. Prepared for the Frederick County Office of Sustainability and Environmental Resources. December 5, 2017

According to the report, a statistical analysis was performed on the individual storm EMC data from WY 1999 to the present to the in-stream station (Kendall's Tau-b correlation):

- TKN: statistically significant trend upward ($T_b = 0.503$, p = 0.0035)
- Nitrate and nitrite: statistically significant trend downward ($T_b = -0477.$, p = 0.0057)
- Phosphorus: Except for a spike in concentration level in WY2009, baseflow phosphorus has shown a declining trend with minor fluctuations since 2004. (report page 2-17).
- TSS: A plot of TSS estimated mean concentrations (EMCs) by storm event did not show a discernible trend. A time series of average annual EMCs showed a general, gradual decline from 1999 to about 2009 and subsequent plateau until FY2016, in which a large increase was noted. The average annual EMC in FY2017 returned to similar levels noted from 2009 to 2015. (Versar report page 2-39)

Above: Total suspended solids, Peter Pan Run in-stream station average of baseflow mean concentrations and storm event mean concentrations. (Versar report Figure 2-12 page 2-18)

Peter Pan Run in-stream station average of mean concentrations for baseflow and storm events (Versar report Figure 2-10 page 2-16 and Figure 2-11 page 2-17):

- Above: TKN, nitrate and nitrite annual flow-weighted.
- Below: Phosphorus

Maryland 319 NPS Program SFY17 Annual Report

Appendix G Page 5 of 8

	1992-SFY17	Complet	Lower M ed NPS Implemen	lonocacy Riv tation Proje	ver Watershed cts - 319(h) Gr	ant and State	e Revolving	Fund		
	Project Summary			Proje	ct Expenditures	6		Pollu	tant Load Redu	iction
Area/Load	Nome/Description	End Data	Cront Funding Source	Gran	t Funds	Non Federal	Total	Nitrogen	Phosphorus	Sediment
Area/Leau	Name/Description	End Date	Grant Funding Source	Federal	State	Match	Total	(lb/yr)	(lb/yr)	(ton/yr)
	Monocacy Agri Enforcement		319 FFY1992 #4	\$55,530						
	Moncacy Eng Tech / SCS		319 FFY1992 #5	\$52,000	Grant budget			Completed proje	ects shaded grey pred	late the baseline
	Monocacy Demo Monitor/Model		319 FFY1992 #9	\$71,438	amount is shown.			year for the wate	ershed plan and are n	ot counted
MDA with	Engineering Support - Monocacy	1994	319 FFY1993 #6		Expenditure data is			toward impleme	ntation progress repo	orting. Blank
Frederick SCD	Monocacy Watershed Initiative		319 FFY1994 #2		not available.			spaces indicate t	hat information was	not available.
	Monocacy Watershed	1996	319 FFY1995 #14	\$83,190						
	Agricultural Implementation	2006	319 FFY04 #23	\$74,767.61		\$49,845.07	\$124,612.68	1,296.3	171.6	4.7
	Agricultural Implementation	2008	319 FFY04 #39	\$35,000.00		\$23,333.33	\$58,333.33	609.64	118.36	10
	Watershed Restoration	2008	319 FFY05 #17	\$216,237.00		\$144,158.00	\$360,395.00	615.9	43.9	8.2
Enclosiols	Ushan Watlanda, Pannatt Craak Bilat	2011	319 FFY07 #4	\$196,732.92		\$131,155.28	\$327,888.20	101.3	18.5	1.6
County	orban wenands, Bennett Creek Fliot	2012	319 FFY08 #4	\$228,361.26		\$152,240.84	\$380,602.10	149.9	31.4	2.782
County	Green Infrastructure	2013	319 FFY10 #9	\$284,739.42		\$189,826.28	\$572,971.98	350.94	34.13	4.07
	Neighborhood Green Infrastructure	SFY16	319 FFY13 #7	\$89,106.78		\$59,404.52	\$148,511.30	30.3	0.43	0.93
		TOT	AL for completed projects	\$1,387,102.99	\$0.00	\$749,963.33	\$1,973,314.60	3,154.3	418.3	32.28

For nitrogen, phosphorus and sediment, BMPs installed 2003 and later can be counted toward watershed plan implementation.

	Lower Monocacy River Watershed SFY 2017 NPS Implementation Project In Progress - 319(h) Grant and State Revolving Fund												
	Project Summary			Pro	oject Funding			Projected	Pollutant Load	Reduction			
Area/Lead	Name/Description	Fnd Date	Crant Funding Source	Gran	t Funds	Non Federal	Total	Nitrogen	Phosphorus	Sediment			
Alea/Leau	Name/Dsescription	Ellu Date	Grant Funding Source	Federal	State	Match	Totai	(lb/yr)	(lb/yr)	(ton/yr)			
NGO (1)	Villages of Lake Linganore Stormwater Project	TBD	SRF loan and other sources		\$6,346,142	\$7,800,000	\$14,146,142	TBD	TBD	TBD			
City of Frederick	Rock Creek Stream Restoration (SFY17 pending execution of subaward agreement)	TBD	319 FFY17 #9	\$270,000		\$180,000	\$450,000	94	85	28			
Frederick County No 319 projects working during SFY17													

Maryland 319 NPS Program SFY17 Annual Report Appendix G Page 6 of 8

Lower Monocacy River Falls Watershed Chesapeake and Atlantic Coastal Bays Trust Fund SFY 2017 NPS Implementation Project Status (1)

Year Funded	PartnerCD	ProjectTitle	ProjectType	County	TrustFund Dollars	Status	BMP Units	BMPs Reported	Annual LbsN	Annual LbsP	Annual TonsTSS
		Hood College, Whitaker Parking lot /					1				
	Center for Watershed	Rosenstock Hall	Stormwater Management	Frederick	36,923.00	Complete			3.5	0.4	0.2545
	Protection	Hood College, North of Coffman Chapel	Stormwater Management	Frederick	56,550.00	Complete	1	1	26.4	1.9	0.8665
		Walnut Ridge (City Stream Restoration and	-	1	10 494 40		1	1			
		Educational Projects)	Tree Planting Projects	Frederick	19,484.40	Complete	acres	4	114.9	7.7	1.36
		Waterford Park (City Stream Restoration and			52 607 88						
		Educational Projects)	Tree Planting Projects	Frederick	32,007.00	Complete	acres	10.8	310.2	20.7	3.67
		Carroll Creek/Baker Park (I) (City Stream			12 664 86		T				
		Restoration and Educational Projects)	Tree Planting Projects	Frederick	12,004.00	Complete	acres	2.6	74.7	5.0	0.88
		Carroll Creek/Baker Park (II)	Tree Planting Projects	Frederick	10,716.42	Complete	acres	2.2	63.2	4.2	0.75
		Carroll Creek/Baker Park (III) (City Stream			34 007 70						
	City of Frederick	Restoration and Educational Projects)	Tree Planting Projects	Frederick	34,097.70	Complete	acres	7	201.0	13.4	2.38
		Old Camp Park (City Stream Restoration and			1 9/8 //		T	T			
		Educational Projects)	Tree Planting Projects	Frederick	1,740.44	Complete	acres	0.4	11.5	0.8	0.14
		Rivermist, City Parkland (City Stream			T 2 435 55	Γ	T	Т	Γ	Γ	
SEV14		Restoration and Educational Projects)	Tree Planting Projects	Frederick	2,733.33	Complete	acres	0.5	14.4	1.0	0.17
SL1 14		Career & Technology Center (City Stream			19 877 00						
		Restoration and Educational Projects)	Education & Outreach	Frederick	17,077.00	Complete	acres	0.9	0.0	0.0	0
		Fredericktowne Village Park (City Stream			23.868.39						
		Restoration and Educational Projects)	Tree Planting Projects	Frederick		Complete	acres	4.9	104.7	9.4	1.67
		Crestwood Middle School (County Riparian									
		Buffers Streams - Student & Community		F 1	6,168.65				11.5		0.126
	Frederick County	Collaborative Service)	Tree Planting Projects	Frederick		Complete	acres	2	11.5	0.8	0.126
		Mountain village HOA (County Kiparian Duffers Streams, Student & Community			0 107 00						
	Enclosial County	Collaborative Service)	Trac Dianting Drojacts	Fradariak	9,107.80	Complete	0.0700	2.5	14.3	1.0	0 1575
	Frederick County		Tree Planting Projects	Frederick		Complete	acres	2.3	14.3	1.0	0.1373
	Fund	Dearbought Park	Tree Planting Projects	Frederick	2,721.65	Complete	acres	0.33	9.7	0.4	0.07
		Schipper - Buffer	Agricultural Practices	Frederick	11,215.00	Complete			289.0	12.0	2.22
		Glick - fencing & grassed waterway	Agricultural Practices	Frederick	11,298.23	Complete	1	1	11.7	0.0	3.04
	Potomac Conservancy	Wetzel	Agricultural Practices	Frederick	2.018.00	Complete	+	+	118.0	4.2	0.92
		Trimmer	A gricultural Practices	Frederick	12 300 00	Complete	+	+	177.0	73	1 359
	Dalmarya PC & D Council	Cassia	Wetland Destoration	Eradoriak	2 460 00	Complete	+	+	27	0.2	0.01
	Definativa KC & D Counch			Fieuerick	5 221 00		+	1.0	2.2	1.0	0.01
SFY15	Maryland Forestry Board	Reid Reforestation	Tree Planting Projects	Frederick	5,251.00	On-going	acres	1.0	0.0	1.0	0.25
	Foundation	Friends Meeting School Reforestation	Tree Planting Projects	Frederick	9,808.00	On-going	acres	3	1.0	1.0	0.43
		Stoneking Reforestation	Tree Planting Projects	Frederick	6,539.00	On-going	acres	2	. 0.0	1.0	0.28
	(1) Maryland DNR provided thi	is data $2/21/17$ and indicated it is the full extent a	wailable.	TOTALS	350,040.97				1,558.9	93.3	20.99
FY15	1	Danny White	Tree Planting Projects	Frederick	3,000.00	On-going	Τ	1	7.7	0.2	0.05
	Marvland Forestry Board	McKnight	Tree Planting Projects	Frederick	4.711.83	Design/Plan	ining	1	5.7	0.92	0.17
FY18	Foundation	Lake Linganore HOA	Tree Planting Projects	Frederick	23 559 15	Design/Plan	ning	+	28.5	4 5	0.85
1 1 10	i oundurion	Date Elligatore HOA	Tree Dianting Projects	Enclosiol	23,339.13	Design/Tian		+	24.0	4.5	0.05
		Day	Tree Planting Projects	Frederick	28,270.98	Design/Plan	ning	+	54.2	5.4	
								4			
	(1) Maryland DNR provided thi	is data 2/21/17 and indicated it is the full extent a	ivailable.	TOTALS	59,541.96				76.1	11.0	2.07

Lover Monocacy River Watersheef Plant Lover Monocacy River Watersheef Plant Strinkter Plant Strinkter Management Practice Flan Table R Geal Unt Strinkter River Strinkter	Appendix G Page 7 of 8											Prior Y	ears Prog	ress Tow	ard Wat	ershed
Agricultural BMP Implementation Costs Extracted from State Data register of the State Data r	SFY2017 Agricultural BMP Impl	ementa	ation				Lower Monocacy R	iver Wa	atershed	Plan			P	ian Goais	•	
In Frederick County, Maryland stimated Pollutant Load Reduction More and Pollutant Load Reduction String Polutant Load Reduction String Polutan	Lower Monocacy River Waters	hed					Agricultural BMP In	npleme	ntation	Goals		Extrac	ted from	State Dat	ta report	ted by
b yry Ntrogen Phosphora Sedimet greubural Pactice u.u.t SY14 Srv17 Srv14	In Frederick County, Maryland			stimated F	Pollutant Loa	d Reductic		-		Prog	ress		MDE to E	EPA Bay P	rogram	-
granuturi SYN17 Ningen Phosphore Sedure Total (lb) Portal Servita											SFY14				-	
nmal Practices or or<	Agricultural Best Management Practice	Unit	SFY17 Total	Nitrogen Total (lbs)	Phosphorus Total (lbs)	Sediment Total (tons)	Management Practice Plan Table R	Goal	Unit	SFY17 Progress	thru SFY17		SFY14	SFY15	SFY16	Units
Cover Cops error 1,739 1,832,85 1,237,8 1,837,8 1,837,8 1,817,8 <t< td=""><td>Annual Practices</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Annual Practices															
Multi-Verset/section Acces O I <td>Cover Crops</td> <td>acres</td> <td>15,759</td> <td>202,826.5</td> <td>1,237.4</td> <td>1,060.32</td> <td>Cover Crops</td> <td>25,111</td> <td>acres/yr</td> <td>15,759</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Cover Crops	acres	15,759	202,826.5	1,237.4	1,060.32	Cover Crops	25,111	acres/yr	15,759						
Atternance of Agross Au Au <td>Multi-Year Practices</td> <td></td>	Multi-Year Practices															
Amendments res. Treatment of Ag Waste AU 0	Alternative Crops	acres	0								0		0	0	0	acres
Alumal Montality Facility Court 0	Amendments re: Treatment of Ag Waste	AU	0								0		0	0	0	AU
Conservation Drawer acros 0 1 -	Animal Mortality Facility	count	0								0		0	0	0	count
Conservation Plans/SCWQP acres 2.358 4,179.5 379.8 228.3 Old 52.92 acres 2,355 10,589 2,048 24.04 371.8 acres Dead Bitlo Compositing Facility Count 0	Conservation Cover	acres	0								26.3		19	7.1	0	acres
Citcle Area 0.01 0.02 0.03 0.01 0 <td>Conservation Plans/SCWQP</td> <td>acres</td> <td>2,356</td> <td>4,179.5</td> <td>379.8</td> <td>283.91</td> <td>Soil Conservation & Water Quality Plans</td> <td>58,292</td> <td>acres</td> <td>2,356</td> <td>10,589</td> <td></td> <td>2,048</td> <td>2467</td> <td>3718</td> <td>acres</td>	Conservation Plans/SCWQP	acres	2,356	4,179.5	379.8	283.91	Soil Conservation & Water Quality Plans	58,292	acres	2,356	10,589		2,048	2467	3718	acres
Dead Birl Court 0 <	Critical Area Planting	acres	0.1	0.02	0.03	0.01					14.3		9.6	4.6	0	acres
Tencing feet 19 2,292.7 201.5 53.84 ield border acres 0	Dead Bird Composting Facility	count	0								0		0	0	0	count
lied Border acces 0 acces 0 0 0 0 0 0 acces 0 acces Grassed Waterway acces 3.6 158.9 5.1 2.68 10.98 10.98 0.04 4.87 2.3 acces origing Lot Management acces 0 - - 0	Fencing	feet	19	2,292.7	201.5	53.84					35043		1147	31286	2591	feet
litter Strip acres 0	Field Border	acres	0				Buffers Grass - Agriculture	789	acres	0	0	_	0	0	0	acres
Grassed Water.way acres 3.6 16.89 5.1 2.68 ording Lot Management acres 0 - - 0 0 0 acres outorse Pasture Mangement acres 0 - - 2.63 0.55 0.54 0.13 acres sture & IA 9 Planing acres 0 - - 2.63 0.55 0.54 0.13 acres Passer Materials acres 0 - - 0 0 0 0 0 0 acres Narian Forset Buffer acres 0 - - 0 <t< td=""><td>Filter Strip</td><td>acres</td><td>0</td><td></td><td></td><td></td><td>Bullets Grass Agriculture</td><td>705</td><td>acres</td><td>0</td><td>0</td><td></td><td>0</td><td>0</td><td>0</td><td>acres</td></t<>	Filter Strip	acres	0				Bullets Grass Agriculture	705	acres	0	0		0	0	0	acres
dorse Pasture Management acres 0	Grassed Waterway	acres	3.6	168.9	5.1	2.68					10.98	_	0.41	4.87	2.1	acres
Loading Lot Management System acres 1.43 85.8 12.9 1.06 Conservation Conse	Horse Pasture Management	acres	0								0		0	0	0	acres
Pasture & Hay Planting acres 0	Loafing Lot Management System	acres	1.43	85.8	12.9	1.06					2.63		0.56	0.54	0.1	acres
prescribed Grazing acres 0	Pasture & Hay Planting	acres	0								46.1		0	9	37.1	acres
Soptime Materials acres 0 acres 0<	Prescribed Grazing	acres	0								213.8		3.8	164.2	45.8	acres
Niparian Forest Buffer acres 24.04 14.4 71.6 13.4 Buffers Forested - Agriculture 2,233 acres 24.04 37.84 0 13.8 0 acres Suparian Herbaceous Cover acres 0 - - - 2.233 acres 24.04 37.84 0 13.8 0 acres Suparian Herbaceous Cover acres 0 - - - - 20 37.84 0 0 acres - - - - - - 0 0 acres - - - - 0 0 acres - - - - - - - 0 0 0 -	P-sorbing Materials	acres	0								0		0	0	0	acres
Niparian Herbaceous Cover acres 0 - - - - 2 0 2 0 acres 3 1 5 - - - - - - - - 2 0 2 0 acres 3 1 5 - - - 1 6 0	Riparian Forest Buffer	acres	24.04	14.4	71.6	13.84	Buffers Forested - Agriculture	2,233	acres	24.04	37.84		0	13.8	0	acres
Noof Runoff Structure Count 11 670.8 110.0 8.13 count 2.0 3 1 5 count Stream Restoration Ag feet 0	Riparian Herbaceous Cover	acres	0								2		0	2	0	acres
Stream Restoration Ag feet 0 </td <td>Roof Runoff Structure</td> <td>count</td> <td>11</td> <td>670.8</td> <td>110.0</td> <td>8.13</td> <td></td> <td></td> <td></td> <td></td> <td>20</td> <td>_</td> <td>3</td> <td>1</td> <td>5</td> <td>count</td>	Roof Runoff Structure	count	11	670.8	110.0	8.13					20	_	3	1	5	count
Tree /Barting - Agriculture 444 acres 14 14.3 0.3 0 0 acres Waste Storage Facility count 12 1,532.4 1,65 0 Animal Waste Mgmt - Livestock 165 count 12 21 3 4 2 count Waste Storage Facility count 0 Animal Waste Mgmt - Livestock 165 count 12 21 3 4 2 count Wastewater Treatment Strip acres 0 0 0 acres 0 acres 0	Stream Restoration Ag	feet	0								0	_	0	0	0	feet
Waste Storage Facility count 12 1,532.4 19.5 0 Animal Waste Mgmt - Livestock 165 count 12 21 13 4 22 0 Wastewater Treatment Strip acres 0 <td>Tree/Shrub Establishment</td> <td>acres</td> <td>14</td> <td>23.9</td> <td>27.7</td> <td>0</td> <td>Tree Planting - Agriculture</td> <td>444</td> <td>acres</td> <td>14</td> <td>14.3</td> <td>_</td> <td>0.3</td> <td>0</td> <td>0</td> <td>acres</td>	Tree/Shrub Establishment	acres	14	23.9	27.7	0	Tree Planting - Agriculture	444	acres	14	14.3	_	0.3	0	0	acres
Wastewater Treatment Strip acres 0 0 acres Water Control Structure count 34 0 47.9 9.24 Water Creation acres 0 0 47.9 9.24 Wetland Creation acres 0 0 47.9 9.24 Wetland Creation acres 0 0 47.9 9.24 Wetland Creation acres 0 0 0 0 0 acres Wetland Creation acres 0 0 0 0 acres 0 0 0 acres Wetland Restoration acres 0 0 0 0 acres 0 0 0 acres Windbreak/Shelterbelt Establishment feet 0 0 0 0 acres 0 0 0 acres Muteriet Management 47,897 acres 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Waste Storage Facility	count	12	1,532.4	19.6	0	Animal Waste Mgmt - Livestock Animal Waste Mgmt - Poultry	165 3	count	12	21		3	4	2	count
Water Control Structure Count 0 Image: Count of the count o	Wastewater Treatment Strip	acres	0								0		0	0	0	acres
Watering Facility count 34 0 47.9 9.24 Wetland Creation acres 0	Water Control Structure	count	0								1		1	0	0	count
Wetland Creation acres 0 0 0 0 0 acres Wetland Restoration acres 0 0 0 0 0 0 0 acres Windbreak/Shelterbelt Establishment feet 0 <td>Watering Facility</td> <td>count</td> <td>34</td> <td>0</td> <td>47.9</td> <td>9.24</td> <td></td> <td></td> <td></td> <td></td> <td>58</td> <td></td> <td>3</td> <td>10</td> <td>11</td> <td>count</td>	Watering Facility	count	34	0	47.9	9.24					58		3	10	11	count
Wetland Restoration acres 0 1 <td>Wetland Creation</td> <td>acres</td> <td>0</td> <td></td> <td></td> <td></td> <td>Wetland - Agriculture</td> <td>376</td> <td>acres</td> <td>0</td> <td>0</td> <td></td> <td>0</td> <td>0</td> <td>0</td> <td>acres</td>	Wetland Creation	acres	0				Wetland - Agriculture	376	acres	0	0		0	0	0	acres
Windbreak/Shelterbelt Establishment feet 0 0 0 0 0 0 0 6et Mindbreak/Shelterbelt Establishment I<	Wetland Restoration	acres	0								0		0	0	0	acres
Image: Section Secting Section Section Secting Section Section Section Section Section	Windbreak/Shelterbelt Establishment	feet	0								0		0	0	0	feet
Image: Sector							Conservation Tillage	24,032	acres/yr							
Image: Stream Protection with Sensing Stream Protection without Fencing Stream Protection without Fencing 207 acres Image: Stream Protection Without Fen							Nutrient Management	47,897	acres							
Image: Stream Protection with Fencing 1,471 acres Image: Stream Protection with Fencing 1,471 acres Image: Stream Protection with Fencing Image: Stream Protection without Fencing Image: Stream Protecting Image:							Retirement of Highly Erodible Land	2,185	acres							
Image: Stream Protection without Fencing 207 acres Total Annual Practices 202,826.5 1,237.4 1,060.32 Total Multi-year Practices 8,968.4 876.1 372.71 Total Pollutant Load Reduction 211.704.9 2.113.4 1.433.03							Stream Protection with Fencing	1,471	acres							
Total Annual Practices 202,826.5 1,237.4 1,060.32 Total Multi-year Practices 8,968.4 876.1 372.71 Total Pollutant Load Reduction 211.704.9 2.113.4 1.433.03							Stream Protection without Fencing	207	acres							
Total Multi-year Practices 8,968.4 876.1 372.71 Total Pollutant Load Reduction 211.794.9 2.113.4 1.433.03	Total Annual Practices			202.826.5	1.237.4	1.060.32										
Total Pollutant Load Reduction 211 704 9 2 113 / 1 / 33 03	Total Multi-vear Practices			8.968.4	876.1	372.71										
	Total Pollutant Load Reduction			211,794,9	2,113.4	1,433,03										

"SFY17 Total" column is MDA data dated 1/22/18. MDE estimated reductions w/ MAST.

The Maryland Department of Agriculture (MDA) defines annual practices as cover crops, nutrient mgmt, manure transport, conservation tillage & high residue tillage.

Appendix G Page 8 of 8	ban BMP Implementation											Prior \	ears Progr	ess Towar	d Watersh	ied Plan
SFY2017 Urba	an BMP	Implement	tation				Lower Monocacy Riv	ver Wate	ershed P	lan				Goals		
Lower Monocacy River Wate	ershed	In Frederic	k Count	y, Marylan	d b		Urban BMP Imple	mentatio	on Goals	5			Extracte	d from Stat	te Data rep	orted by
		BMPs	stimated	Pollutant Loa	ad Reductic	Plan	Urban Management			Pro	gress	Prior to	MDE	to the EP	A Bay Prog	Jram 🥤
Urban Management Practice	Unit	Reported	Nitrogen Ib/yr	Phosphorus Ib/yr	s Sediment tons/yr	Page 25	Practice	Goal	Unit	SFY17	SFY14- SFY17	SFY14	SFY14	SFY15	SFY16	Units
Bioretention (A)	acres	0)								7.92		0.32	7.60	0	acres
Bioswale (A)	acres	0)								0		0	0	0	acres
Cisterns & Rain Barrels (A)	acres	0)								0.78		0	0.78	0	acres
Disconnection of Rooftop Runoff (A)	acres	0)								0	ogy	0	0	0	acres
Dry Detention Ponds & Hydro Structures (A)	acres	0)								0	lop	0	0	0	acres
Dry Extended Detention Ponds (A)	acres	0)								5.32	tho	0	5.32	0	acres
Dry Well (A)	acres	0)								0	ue.	0	0	0	acres
Filtering Practices (A)	acres	0)								0	ы С	0	0	0	acres
Forest Conservation	acres	0)								0	orti	0	0	0	acres
Forest Harvesting Practices	acres	0)								0	rep	0	0	0	acres
Infiltration Practices (A)	acres	0)								4.74	his	0	4.74	0	acres
Permeable Pavement (A)	acres	0)								0.59	ih tl	0	0.59	0	acres
Rain Garden (A)	acres	0)								0.23	wit	0	0.23	0	acres
Reduction of Impervious Surface (A)	acres	0)								0	ble	0	0	0	acres
Riparian Forest Buffers on Urban Lands (B)	acres	0)								46.51	oati	44.91	1.60	0	acres
Septics Connections to Sewers	count	0)									l ú	0	0	0	count
Septic Denitrification Critical Area	count	0)			Table T	Septic Denitrification (upgrade	17 78/		60	240	t cc	0	0	0	count
Septic Denitrification outside of 1000 feet	count	25	150.0	D			& connection to sewer)	17,70-	FOOUN	00	240	bu o	11	65	43	count
Septic Denitrification within 1000 feet	count	35	126.0	D								ts is	16	10	35	count
Septic Tank Pumpout	count	0)								0	port	0	0	0	count
Stream Restoration Urban	feet	0)			Table T	Stream Restoration, Urban	956	6 feet	0	0	Lei	0	0	0	feet
Street Sweeping (A)	acres	0)								0	nual	0	0	0	acres
Tree Planting	acres	0)			Table T	Tree Planting (urban)	20) acres	0	0	anc	0	0	0	acres
Urban Forest Buffer (B)	acres	0)								8.15	. <u>C</u>	7.15	1.00	0	acres
Wet Extended Detention (A)	acres	0)								0	cals	0	0	0	acres
Wet Ponds and Wetlands (A)	acres	0)								0	l o	0	0	0	acres
						Table T	Nutrient Management mixed	18,461	lacres		0	d e				
						Table T	Nutrient Management urban	17,427	7 acres		0	Data				
						Table T	Sediment & Erosion Control	1,460) acres		0					
						Table T	Buffers Forested, Urban (B)	73	B acres	0	54.66					
						Table T	Stormwater Management (A)	6,780) acres	0	19.58					
Urban TOTAL Po "BMPs Reported" column is MDE data 1/25/17 Pollution load reduction is estimated by MDE	ollutant Lo 7. MDE us 5 using MA	oad Reduction ed MAST to e	276.0 estimated p	0.0 0.0 000000000000000000000000000000) 0.00 tion.	(A) Watershe (A). (B) Watershe	ed plan goal "Stormwater Management" p ed plan goal "Buffers Forested, Urban" ag	progress aggi ggregates rep	regates repo	rting for BMF /IPs footnote	Ps footnoted d (B).					
	0															

Appendix H

Middle Gwynns Falls in Baltimore City and Baltimore County, Maryland Watershed Eligible for 319(h) Grant Implementation Funding

Contents

- H.1. Middle Gwynns Falls SWAP Overview and Milestones
- H.2. Urban BMP Tracking/Reporting
- H.3. Agricultural BMP Tracking/Reporting
- H.4. Grant-Funded Implementation Projects
- H.5. Monitoring Gwynns Falls Watershed
 - H.5.a. Water Quality State Agencies
 - H.5.b. Nontidal Water Quality Baltimore County
 - H.5.c. Nontidal Bacteria Baltimore County
 - H.5.d Nontidal Biology Baltimore County

H.6 Scotts Level Branch Long Term Monitoring

H.7 Before/After Monitoring: McDonogh Road Stream Restoration Project

H.1. Middle Gwynns Falls SWAP Overview

The *Middle Gywnns Falls Small Watershed Action Plan* (SWAP) was completed by Baltimore County in September 2013, an addendum was completed in April 2014, and the overall plan was accepted by EPA in April 2014. The part of the watershed encompassed by the watershed plan is the Baltimore County portion of the watershed. Downstream Baltimore City watershed areas are not addressed in this watershed plan. Land use in Baltimore County's Middle Gwynns Falls watershed is 60.9% residential (0.6% low density, 42.5% mid density and 15.2% high density). Various other developed land uses cover 21.1% of the watershed (8.3% commercial, 3.5% industrial, 6.4% institutional and 2.9 transportation). Open land uses account for the remaining 17.9% of the watershed area (5.2% open urban, 12.5% forest and 0.2% agriculture). Overall, impervious surfaces cover 28.9% of the watershed.

Pollutant reduction goals by 2025 (and location within the watershed plan):

- Nitrogen: 50,442 pounds per year (Table 3-3 on page 23).
- Phosphorus: 4,086 pounds per year (Table 3-3 on page 23).
- Sediment: 4,357,308 pounds per year, i.e. 2,179 tons per year (Addendum A Table A-5).
- Fecal Bacteria: varies by monitoring station (Addendum A Table A-12).
- Chloride: The plan has a general goal to reduce in-stream chloride levels.

BMP implementation goals:

- Nitrogen and phosphorus: Appendix A Table A-2.
- Sediment: Addendum A Table A-6.
- Bacteria: Addendum A Section A.3.2

There are three different base years for tracking watershed plan implementation:

- <u>Nitrogen and phosphorus base year is 2011</u>. Pollutant load reductions reported that year and thereafter can be counted toward meeting watershed plan goals. The watershed plan Section 2.2 pages 12-15 indicates that the goal is to help meet the "bay-wide Chesapeake Bay TMDL" completed in 2010. Watershed plan Section 3.4.1.1 page 22 indicates that the baseline NPS load estimates in the plan were derived from 2010 land use data.
- <u>Sediment base year is 2008</u>. Pollutant load reductions reported that year and thereafter

can be counted toward meeting watershed plan goals. The watershed plan Addendum A.2.1 indicates that the sediment reduction goal is based land use data from 2007 aerial imagery. The Bay TMDL is based on Chesapeake Bay Program P5 model land uses (pages 5-7) and the edge-of-field target erosion rated (pages 8-12).

- <u>Bacteria base year is 2004</u>. Pollutant load reductions reported that year and thereafter can be counted toward meeting watershed plan goals. The watershed plan Addendum A Section A.3 indicates that the bacteria reduction goal is based on the Gwynns Falls Bacteria TMDL approved by EPA in 2007. The Bacteria TMDL Section 2.2 pages 10-12 indicate that the TMDL is based on monitoring conducted 2003 and earlier.

Maryland's 2015-2019 NPS Management Plan Objective 5 lists one milestone for this watershed: annually report progress in the 319 Annual Report.

H.2. Urban BMP tracking/reporting

The table below presents Baltimore County tracking of watershed plan implementation progress by the Department of Environmental Protection & Sustainability, Watershed Management and Monitoring Section. Additionally, the County also used their own methods for estimating pollutant load reduction that are reported here and elsewhere in the SFY2017 Annual Report.

Middle Gwynns Falls SWAP													
BN	IP Impleme	ntation Goals and I	Progress										
Management Practices Listed by	SWAP	Units	2013-FY16	FY17	Total								
SWAP Action Number	Goal		Progress	Activity	Progress								
2. Street Sweeping (1)	76	miles	?	?	?								
3. Storm Water Conversions	10	ponds	6	0	6								
6. Stormwater Retrofits	20	projects	4	0	4								
7. Impervious Area Removal	2.8	acres	0.48	0.06	0.54								
8. Downspout Disconnection	89	rooftop acres	0.36	0	0.36								
9. Wetland creation (urban) (2)	1	project	1	0	0								
13. Riparian Buffer Trees (3)	127	acres	3.19	0.0	3.19								
14. Street and Shade Trees	28.8	Acres	3.1	1.58	4.68								
15. Institutional Trees (3)	46.7	acres	1.47	6.82	8.29								
33. Stream Restoration	32,432	Linear feet	1,973	0	1,973								
Redevelopment	897	acres	2.0	0	2.0								

(1) Street sweeping is not tracked by miles, so progress for this SWAP goal cannot be reported.

(2) The report for FY15 is for the Scotts Level Stream Restoration project, which constructed four artificial wetlands within the project. Another three artificial wetlands where constructed as part of stormwater retrofit projects, which are accounted for under management practice #6.

(3) Riparian buffer trees planted on institutional property are counted as buffer and not institutional to avoid double counting.

H.3. Agricultural BMP tracking/reporting

The Middle Gwynns Falls watershed has less than one percent area with agricultural activity. The SWAP does not have agricultural BMP implementation goals. The Maryland Department of Agriculture tracks agricultural BMP implementation statewide. They report for SFY17 identified 11 acres of cover crops and no other agricultural BMPs. In SFY14 and SFY15 small acreages of cover crops were also reported but none in SFY16.

H.4. Grant-Funded Implementation Projects

The following three pages present tables summarizing the status of grant-funded NPS BMP implementation from the follow grant sources:

- 319(h) Grant and State Revolving Fund
- Chesapeake and Atlantic Coastal Bays Trust Fund

H.5. Monitoring Gwynns Falls Watershed

H.5.a. Water Quality – State Agencies Monitoring

The Maryland Department of Natural Resource provided the following information ¹

- Gwynns Falls nontidal area (Middle Gwynns Falls is a subwatershed herein)
 - Measured phosphorus levels in the water have decreased at all of the non-tidal monitoring locations in the Patapsco River watershed, and sediment levels have decreased at two monitoring locations. Phosphorus levels at the Gwynns Falls station had still decreased when changes in river flow are accounted for.
- Patapsco River tidal (receives flows from Gwynns Falls, Jones Falls, etc.)
 - Water quality in the tidal waters of the Patapsco River is fair in part because nitrogen levels are too high. Phosphorus and sediment levels have improved. Habitat quality for underwater grasses is poor due to high algal densities and poor water clarity. Severe algal blooms are common in the Patapsco in the summer. Habitat quality for bottom dwelling animals is poor and has gotten worse.

MDE nontidal monitoring projects funded by the 319(h) Grant have not been active anywhere in the Gwynns Falls watershed. ^{2, 3}

¹ DNR. *Water Quality Summary 2013-2015*. Preliminary report received via personal communication 11/6/17.

² Maryland Department of the Environment. MDE Targeted Watershed Project. 319(h) Grant FFY2016 Project 4. ³ Maryland Department of the Environment. MDE Biological Assessment for Water Quality Protection and TMDL Implementation. 319(h) Grant FFY2016 Project 5.

Maryland 319 NPS Program SFY17 Annual Report Appendix H Middle Gwynns Falls Page 4 of 5

	Middle Gwynns Falls (In Baltimore County only)													
	2011-SFY17	Com	pleted NPS Im	plementation	Projects - 3	19(h) Grant a	and State Re	volving Fu	nd					
	Project Summary Project Expenditures Pollutant Load Reduction													
	No. a Desa i di s	End	Grant Funding	Grant	Funds	MAL	T. (.) (1)	Nitrogen	Phosphorus	Sediment	Bacteria			
Area/Lead	Name/Description	Date	Source	Federal \$	State \$	Match \$	1 otal \$ (1)	(lb/yr)	(lb/yr)	(ton/yr)	(MPN)			
Baltimore	Scotts Level McDonogh Road Watershed Restoration Project	2014	319 FFY12 #5	\$320,004		\$213,336	\$533,340	415.20	136.4	306.2	0			
County	no SRF funded projects													
	TOTAL for completed projects \$320,004.00 \$0 \$213,336.00 \$533,340.00 415 136 306 0													

For nitrogen and phosphorus pollutant loads, BMPs installed 2011 and later can be counted toward watershed plan implementation. For sediment pollutant loads, BMPs installed 2011 and later can be counted toward watershed plan implementation.

SFY17 NPS Implementation Projects In Progress - 319(h) Grant and State Revolving Fund - Middle Gwynns Falls Watershed											
	Project Summary	Project Funding					Projected Pollutant Load Reduction				
Area/Lead	Name/Description	End	Grant Funding	Grant Funds		Matah \$	Total \$	Nitrogen	Phosphorus	Sediment	Bacteria
		Date	Source	Federal \$	State \$	Match \$ 10tal \$		(lb/yr)	(lb/yr)	(ton/yr)	(MPN)
Baltimore County	Scotts Level at Marriottsville Road Stream Restoration	TBD	319 FFY16 #10	\$613,940		\$409,293	\$1,023,233	1,580	728	693	0
	No SRF projects working during SFY17										

Middle Gwynns Falls Watershed Chesapeake and Atlantic Coastal Bays Trust Fund SFY 2017 NPS Implementation Project Status (1)

Year Funded	Partner	ProjectTitle	ProjectType	County	TrustFund Dollars	Status	BMP Units	BMPs Reported	Annual LbsN	Annual LbsP	Annual TonsTSS
		Scotts Level Branch at McDonough Retrofit,									
FY13	Baltimore County	Stream Restoration, and Buffer	Stream Restoration	Baltimore	680,000.00	Complete			415.2	136.4	306.2
FY14	Alliance for the	Temple Emanuel of Baltimore	Tree Planting Projects	Baltimore	4,861.50	Complete	acres	0.8	3.8	0.2	0.0124
	Chesapeake Bay	Christ the King Church	Tree Planting Projects	Baltimore	2,975.52	Complete	acres	0.5	2.3	0.1	0.008
	Baltimore County	Woodlawn HS	Tree Planting Projects	Baltimore	12,528.36	Complete	acres	2.16	10.9	0.8	0.74
		Powhatan ES	Tree Planting Projects	Baltimore	6,380.18	Complete	acres	1.1	6.3	0.4	0.07
	(1) Maryland DNR provided this data 11/30/17 and indicated it is the full extent available.				706,745.56				438.5	137.9	307.03

FY14	Baltimore County	Dead Run at Westview Park Stream Restoration	Stream Restoration	Baltimore	1,225,312.00	Construction		401.0	185.0	31
	(1) Maryland DNR provided this data 11/30/17 and indicated it is the full extent available.			TOTALS	1,225,312.00			401.0	185.0	31.00
H.5.b. Nontidal Water Quality - Baltimore County Monitoring

Each year Baltimore County reports progress to meet their MS4 permit requirements.⁴ In their report, findings from monitoring are summarized. The distribution of countywide water quality monitoring stations in Baltimore County is shown in the adjacent map.

According to the County, their Gwynns Falls water quality monitoring stations are showing the following trends for pollutant concentrations. (2017 County MS4 report Figure 9-19 page 9-53): -- Nitrogen slope = -2.6578 -- Phosphorus slope = -0.0158 -- Sediment slope = -7.0469 (A negative slope indicates reduced pollutant load and improving water quality)

Baltimore County trend monitoring sites. (2017 County MS4 report

Figure 9-21 page 9-46)

⁴ Baltimore County. NPDES Municipal Stormwater Discharge Permit 2017 Annual Report. December 22, 2017.

H.5.c. Nontidal Bacteria – Baltimore County Monitoring

Baltimore County also conducts bacteria monitoring at the stations shown in the map below. There are six bacteria trend monitoring sites in the Gwynns Falls watershed. Two of the monitoring sites are in the city and four are in the county. The table on the next page presents the number of samples and the geometric mean for high (wet) flow and low (dry) flow by year. It also presents the geometric mean of all samples by year regardless of condition. The table is stratified by annual data (includes all data collected for the year) and seasonal data (includes only those samples collected between May 1st and September 30th each year).

Legend

- New Trend Sites
- Bacteria Monitoring Stations

Baltimore County/City and Carrol County

The County graphed E. coli geometric mean concentrations for both annual and seasonal flow periods stratified by flow condition as shown on the following pages. On the map (left), the same data used in the graphs is summarized further. In the map, the highlighted green monitoring stations indicate geometric means that do not meet the water quality standard of 126 MPN. Additionally, the County noted that samples taken in 2016 were almost completely during low flows.

Map: Baltimore County bacteria monitoring sites. (2017 County MS4 report Figure 9-27 page 9-56)

Annual Data (MPN/100 ml)												
5 :4 a	Flow	20)12	20)13	20)14	20)15	2016		
Site	Туре	N	MPN	Ν	MPN	Ν	MPN	Ν	MPN	Ν	MPN	
	High	3	1726	2	2420	4	1742	3	1754	2	3404	
GWY-1 City	Low	9	1554	10	542	7	925	7	1534	7	546	
City	All	12	1595	12	696	11	1164	10	1597	9	921	
	High	3	567	2	212	4	1451	3	1372	2	517	
GWY-2	Low	9	163	10	87	8	269	8	132	7	213	
	All	12	222	12	101	12	471	11	299	9	238	
	High	3	1083	2	1646	4	1844	3	970	2	2420	
GWY-5	Low	9	421	10	91	7	237	6	514	7	265	
City	All	12	533	12	148	11	499	9	635	9	364	
	High	3	526	3	927	4	1330	6	737	6	1396	
GWY-6	Low	8	169	9	72	7	119	11	<i>9</i> 7	11	140	
	All	11	231	12	137	11	285	17	199	17	315	
	High							6	2027	4	1566	
DR-B-10	Low							11	465	12	198	
	All							17	782	16	388	
	High							6	1444	4	3609	
GF-B-8	Low							11	300	12	804	
	All							17	522	16	1171	
								-		- +	-	
		Se	asonal Da	ta (May	1 st to Sept	ember 30) th) (MPN/	100 ml)				
Site	Flow	Se 20	asonal Da)12	ta (May 2(1 st to Sept)13	ember 30 20) th) (MPN/)14	100 ml) 20	015	20	16	
Site	Flow Type	Se 20 N	asonal Da)12 MPN	ta (May 2(N	1 st to Sept 013 MPN	ember 30 20 N	0 th) (MPN/ 014 MPN	100 ml) 20 N	015 MPN	20 N	16 MPN	
Site	Flow Type High	Se 20 N 1	asonal Da 012 MPN 4352	ta (May 20 N 1	1 st to Sept 013 MPN 2420	ember 30 20 <u>N</u> 2	th) (MPN/ 014 MPN 2420	100 ml) 20 N 1	015 MPN 2420	20 N 0	16 MPN	
Site GWY-1 City	Flow Type High Low	Se 20 N 1 4	asonal Da 012 MPN 4352 2394	ta (May 20 N 1 4	1 st to Sept 013 <u>MPN</u> 2420 570	ember 30 20 N 2 3	th) (MPN/ 014 <u>MPN</u> 2420 855	100 ml) 20 N 1 3	015 MPN 2420 1081	20 N 0 4	MPN 376	
Site GWY-1 City	Flow Type High Low All	Se 20 N 1 4 5	asonal Da 012 MPN 4352 2394 2698	ta (May 20 N 1 4 5	1 st to Sept 013 MPN 2420 570 761	ember 30 20 N 2 3 5	th) (MPN/ 014 MPN 2420 855 1296	100 ml) 20 N 1 3 4	015 MPN 2420 1081 1322	20 N 0 4 4	16 MPN 376 376	
Site GWY-1 City	Flow Type High Low All High	Se 20 N 1 4 5 1	asonal Da)12 MPN 4352 2394 2698 816	ta (May 2(N 1 4 5 1	1 st to Septo 13 MPN 2420 570 761 172	ember 30 20 N 2 3 5 2	th) (MPN/ 014 MPN 2420 855 1296 2420	100 ml) 20 N 1 3 4 1	015 MPN 2420 1081 1322 1553	20 N 0 4 4 0	16 MPN 376 376	
Site GWY-1 City GWY-2	Flow Type High Low All High Low	Se 2(N 1 4 5 1 3	asonal Da)12 MPN 4352 2394 2698 816 395	ta (May 2(N 1 4 5 1 1 4	1 st to Sept 13 MPN 2420 570 761 172 181	ember 30 20 N 2 3 5 2 3	th) (MPN/)14 MPN 2420 855 1296 2420 314	100 ml) 20 N 1 3 4 1 3	015 MPN 2420 1081 1322 1553 189	20 N 0 4 4 0 4	16 MPN 376 376 267	
Site GWY-1 City GWY-2	Flow Type High Low All High Low All	Se 2(N 1 4 5 1 3 4	asonal Da)12 MPN 4352 2394 2698 816 395 474	ta (May 2(N 1 4 5 1 1 4 5	1 st to Septe 013 MPN 2420 570 761 172 181 180	ember 30 2(N 2 3 5 2 3 5 5 5	th) (MPN/ 014 MPN 2420 855 1296 2420 314 711	100 ml) 2(N 1 3 4 1 3 4 1 3 4	MPN 2420 1081 1322 1553 189 321	20 N 0 4 4 0 0 4 4 4 0	16 MPN 376 376 267 267	
Site GWY-1 City GWY-2 GWY-5	Flow Type High Low All High Low All High	Se 2(N 1 4 5 1 3 4 1	asonal Da)12 MPN 4352 2394 2698 816 395 474 3784	ta (May 2(N 1 4 5 1 4 5 1 4 5	1 st to Sept)13 MIPN 2420 570 761 172 181 180 1120	ember 30 2(N 2 3 5 2 3 5 2 3 5 2	th) (MPN/ 014 MPN 2420 855 1296 2420 314 711 2420	100 ml) 20 N 1 3 4 1 3 4 1 3 4 1 3 4 1 3	MPN 2420 1081 1322 1553 189 321 2420	20 N 0 4 4 0 4 4 0 0	MPN 376 376 267 267	
Site GWY-1 City GWY-2 GWY-5 City	Flow Type High Low All High Low All High Low	Se 2(N 1 4 5 1 3 4 1 1 4	asonal Da)12 MPN 4352 2394 2698 816 395 474 3784 365	ta (May 2(N 1 4 5 1 4 5 1 4 5 1 4	1 st to Sept)13 MPN 2420 570 761 172 181 180 1120 177	ember 30 2(N 2 3 5 2 3 5 2 3 5 2 3	th) (MPN/ 014 MPN 2420 855 1296 2420 314 711 2420 175	100 ml) 20 N 1 3 4 1 3 4 1 3 4 1 3	MPN 2420 1081 1322 1553 189 321 2420 667	20 N 0 4 4 0 4 4 0 4 4 0 4 4	16 MPN 376 376 267 267 267 164	
Site GWY-1 City GWY-2 GWY-5 City	Flow Type High Low All High Low All High Low All	Se 2(N 1 4 5 1 3 4 1 4 5 5	asonal Da)12 MPN 4352 2394 2698 816 395 474 3784 365 404	ta (May 2(N 1 4 5 1 4 5 1 1 4 5 5	1st to Sept 013 MPN 2420 570 761 172 181 180 1120 177 256	ember 30 2(N 2 3 5 2 3 5 2 2 3 5 2 3 5 5 2 3 5 5	th) (MPN/ 014 MPN 2420 855 1296 2420 314 711 2420 175 501	100 ml) 2(N 1 3 4 1 3 4 1 3 4 1 3 4 1 3 4	MPN 2420 1081 1322 1553 189 321 2420 667 921	20 N 0 4 4 0 4 4 0 4 4 0 4 4 4 0 4 4 0 4 4 4 0 1 1 1 1 1 1 1 1 1 1 1 1 1	16 MPN 376 376 267 267 164 164	
Site GWY-1 City GWY-2 GWY-5 City	Flow Type High Low All High Low All High Low All High	Se 2(N 1 4 5 1 3 4 1 1 4 5 1	asonal Da)12 MPN 4352 2394 2698 816 395 474 3784 365 404 579	ta (May 2(N 1 4 5 1 4 5 1 1 4 5 1 1 4 5 1	1st to Sept)13 MPN 2420 570 761 172 181 180 1120 177 256 921	ember 30 2(N 2 3 5 2 3 5 2 3 5 2 3 5 2 2 3 5 2 2	th) (MPN/ 014 MIPN 2420 855 1296 2420 314 711 2420 175 501 1773	100 ml) 2(N 1 3 4 1 3 4 1 3 4 1 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 5 6 6 6 6 6 6 7 7 8 8 8 7 8 8 8 8 8 8 8 8 8 8 8 8 8	MPN 2420 1081 1322 1553 189 321 2420 667 921 1685	20 N 0 4 4 0 4 4 0 4 4 4 3	16 MPN 376 376 267 267 164 164 164	
Site GWY-1 City GWY-2 GWY-5 City GWY-6	Flow Type High Low All High Low All High Low All High Low	Se 2(N 1 4 5 1 3 4 1 4 5 1 4 5 1 3	asonal Da)12 MPN 4352 2394 2698 816 395 474 3784 365 404 579 267	ta (May 2(N 1 4 5 1 4 5 1 4 5 1 4 5 1 4	1st to Sept)13 MIPN 2420 570 761 172 181 180 1120 177 256 921 96	ember 30 2(N 2 3 5 2 3 5 2 3 5 2 3 5 2 2 3 5 2 2 2 2	th) (MPN/ 014 MPN 2420 855 1296 2420 314 711 2420 175 501 1773 298	100 ml) 2(N 1 3 4 1 3 4 1 3 4 1 3 4 3 7	MPN 2420 1081 1322 1553 189 321 2420 667 921 1685 232	20 N 0 4 4 0 4 4 0 4 4 0 4 4 3 7	16 MPN 376 376 267 267 164 164 1967 173	
Site GWY-1 City GWY-2 GWY-5 City GWY-6	Flow Type High Low All High Low All High Low All High Low All	Se 20 N 1 4 5 1 3 4 1 4 5 1 1 3 4 4	asonal Da)12 MPN 4352 2394 2698 816 395 474 3784 365 404 579 267 324	ta (May 2(N 1 4 5 1 4 5 1 4 5 1 1 4 5 1 1 4 5 5	1st to Sept)13 MPN 2420 570 761 172 181 180 1120 177 256 921 96 151	ember 30 20 N 2 3 5 2 3 5 2 3 5 2 3 5 2 2 3 5 2 2 2 2	th) (MPN/ 014 MPN 2420 855 1296 2420 314 711 2420 175 501 1773 298 727	100 ml) 20 N 1 3 4 1 3 4 1 3 4 1 3 4 3 4 7 10 10 10 10 10 10 10 10 10 10	MPN 2420 1081 1322 1553 189 321 2420 667 921 1685 232 420	20 N 0 4 4 0 4 4 0 4 4 4 0 4 4 4 3 7 10	16 MPN 376 376 267 267 164 164 1967 173 358	
Site GWY-1 City GWY-2 GWY-5 City GWY-6	Flow Type High Low All High Low All High Low All High Low All High	Se 2(N 1 4 5 1 3 4 1 4 5 1 3 4	asonal Da)12 MPN 4352 2394 2698 816 395 474 3784 365 404 579 267 324	ta (May 2(N 1 4 5 1 4 5 1 4 5 1 1 4 5 5	1st to Sept)13 MPN 2420 570 761 172 181 180 1120 1177 256 921 96 151	ember 30 2(N 2 3 5 2 3 5 2 3 5 2 2 3 5 2 2 2 4	th) (MPN/ 014 MPN 2420 855 1296 2420 314 711 2420 175 501 1773 298 727	100 ml) 2(N 1 3 4 1 3 3 4 1 3 3 4 1 3 3 4 1 3 3 4 1 3 3 4 1 3 3 4 3 3 3 3 1 3 3 3 3 3 3 3 3 3 3 3 3 3	MPN 2420 1081 1322 1553 189 321 2420 667 921 1685 232 420 1971	20 N 0 4 4 0 4 4 0 4 4 0 4 4 3 7 10 1	16 MPN 376 376 267 267 164 164 1967 173 358 2420	
Site GWY-1 City GWY-2 GWY-5 City GWY-6 DR-B-10	Flow Type High Low All High Low All High Low All High Low All High Low	Se 2(N 1 4 5 1 3 4 1 4 5 1 3 4 4	asonal Da)12 MPN 4352 2394 2698 816 395 474 3784 365 404 579 267 324	ta (May 2(N 1 4 5 1 4 5 1 4 5 1 4 5 5	1st to Sept)13 MIPN 2420 570 761 172 181 180 1120 177 256 921 96 151	ember 30 2(N 2 3 5 2 3 5 2 3 5 2 2 3 5 2 2 2 4 4	th) (MPN/ 014 MIPN 2420 855 1296 2420 314 711 2420 175 501 1773 298 727	100 ml) 2(N 1 3 4 3 4 3 7 1 1 3 4 3 4 3 7 1 1 3 4 3 7 1 1 3 4 3 7 1 1 3 4 3 7 1 1 3 7 1 1 3 7 1 1 3 7 1 1 3 7 1 1 3 7 1 1 3 7 1 1 3 7 1 1 3 3 7 1 1 3 7 1 1 3 7 1 1 3 7 1 1 3 7 7 1 1 3 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1	MPN 2420 1081 1322 1553 189 321 2420 667 921 1685 232 420 1971 634	20 N 0 4 4 0 4 4 0 4 4 0 4 4 0 4 4 0 10 1 9	16 MPN 376 376 267 267 164 164 1967 173 358 2420 344	
Site GWY-1 City GWY-2 GWY-5 City GWY-6 DR-B-10	Flow Type High Low All High Low All High Low All High Low All High Low All High	Se 2(N 1 4 5 1 3 4 1 4 5 1 3 4	asonal Da)12 MPN 4352 2394 2698 816 395 474 3784 365 404 579 267 324 	ta (May 2(N 1 4 5 1 4 5 1 4 5 1 4 5 5	1st to Sept)13 MIPN 2420 570 761 172 181 180 1120 177 256 921 96 151	ember 30 2(N 2 3 5 2 3 5 2 3 5 2 2 3 5 2 4 4	th) (MPN/ 014 MPN 2420 855 1296 2420 314 711 2420 175 501 1773 298 727	100 ml) 2(N 1 3 4 1 3 1 3 1 3 1 1 3 1 1 3 1 1 3 1 1 1 3 1 1 1 3 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1	MPN 2420 1081 1322 1553 189 321 2420 667 921 1685 232 420 1971 634 891	20 N 0 4 4 0 4 4 0 4 4 0 4 4 0 4 4 0 10 10 10	16 MPN 376 376 267 267 164 164 1967 173 358 2420 344 418	
Site GWY-1 City GWY-2 GWY-5 City GWY-6 DR-B-10	Flow Type High Low All High Low All High Low All High Low All High Low All High	Se 20 N 1 4 5 1 3 4 1 4 5 1 3 4 1 3 4	asonal Da)12 MPN 4352 2394 2698 816 395 474 3784 365 404 579 267 324 	ta (May 2(N 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5	1 st to Sept)13 MIPN 2420 570 761 172 181 180 1120 177 256 921 96 151 	ember 30 2(N 2 3 5 2 3 5 2 3 5 2 2 3 5 2 2 4 4 2 3 5 2 2 3 5 2 2 3 5 2 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 5 2 3 5 5 2 3 5 5 2 3 5 5 2 3 5 5 2 3 5 5 2 3 5 5 2 3 5 5 2 3 5 5 2 3 5 5 2 3 5 5 2 3 5 5 2 2 3 5 5 2 2 3 5 5 2 2 3 5 5 2 2 3 5 5 2 2 3 5 5 2 2 2 3 5 5 2 2 2 3 5 2 2 2 3 5 2 2 2 2 3 5 2 2 2 2 3 5 2 2 2 2 2 3 5 2 2 2 2 2 2 4 4 2 2 2 2 4 4 2 2 2 2 4 4 2 2 2 2 2 2 4 4 2 2 2 2 2 4 4 2 2 2 2 2 2 4 4 2 2 2 2 2 2 2 4 4 2 2 2 2 2 2 4 4 2 2 2 2 2 4 4 2 2 2 2 2 2 2 2 2 2 2 2 2	th) (MPN/ 014 MPN 2420 855 1296 2420 314 711 2420 175 501 1773 298 727	100 ml) 2(N 1 3 4 1 3 1 1 3 1 1 3 1 1 1 3 1 1 1 3 1 1 1 1 3 1 1 1 3 1 1 1 1 3 1 1 1 3 1 1 1 1 3 1 1 1 3 1 1 1 1 3 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1	MPN 2420 1081 1322 1553 189 321 2420 667 921 1685 232 420 1971 634 891 1727	20 N 0 4 4 0 4 4 0 4 4 0 4 4 0 4 4 0 10 10 10 10 10 10 10 10 10	16 MPN 376 376 376 267 267 164 164 1967 173 358 2420 344 418 2420	
Site GWY-1 City GWY-2 GWY-5 City GWY-6 DR-B-10 GF-B-8	Flow Type High Low All High Low All High Low All High Low All High Low All High	Se 2(N 1 4 5 1 3 4 1 4 5 1 3 4	asonal Da)12 MPN 4352 2394 2698 816 395 474 3784 365 404 579 267 324 	ta (May 2(N 1 4 5 1 4 5 1 4 5 1 4 5 5 1 1 4 5 5	1st to Sept)13 MIPN 2420 570 761 172 181 180 1120 177 256 921 96 151 	ember 30 2(N 2 3 5 2 3 5 2 3 5 2 3 5 2 4 4 4	th) (MPN/ 014 MIPN 2420 855 1296 2420 314 711 2420 175 501 1773 298 727	100 ml) 2(N 1 3 4 1 3 1 1 3 4 1 3 1 1 1 3 1 1 3 1 1 3 1 1 1 3 1 1 1 3 1 1 1 3 1 1 1 3 1 1 1 3 1 1 1 3 1 1 1 3 1 1 1 3 1 1 3 1 1 1 3 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1	MPN 2420 1081 1322 1553 189 321 2420 667 921 1685 232 420 1971 634 891 1727 238	20 N 0 4 4 0 4 4 0 4 4 0 4 4 0 4 4 0 1 9 10 1 9 9	16 MPN 376 376 376 267 267 164 164 1967 173 358 2420 344 418 2420 791	

Gwynns Falls E. coli Results on an Annual and Seasonal Basis (2017 County MS4 report Table 9-34 page 9-82)

At stations GWY-1 and GWY-2, the E. coli geometric mean concentrations are presented below for both annual and seasonal flow periods stratified by flow condition. MDE monitoring results shown are from 2002-2003. The horizontal red line represents the water quality standard of 126 MPN/100 ml for E. coli. (2017 County MS4 report Figures 9-48 and 9-49, page 9-83)

At stations GWY-5 and GWY-6, the E. coli geometric mean concentrations are presented below for both annual and seasonal flow periods stratified by flow condition. MDE monitoring results shown are from 2002-2003. The horizontal red line represents the water quality standard of 126 MPN/100 ml for E. coli. (2017 County MS4 report Figures 9-50 and 9-51, page 9-84)

At stations DR-8-10 and GF-B-8, the E. coli geometric mean concentrations are presented below for both annual and seasonal flow periods stratified by flow condition. The horizontal red line represents the water quality standard of 126 MPN/100 ml for E. coli. (2017 County MS4 report Figures 9-52 and 9-53, page 9-85)

H.5.d Nontidal Biology – Baltimore County

One the five biological monitoring programs conducted by Baltimore County is used to assess ecological health of streams using a probabilistic monitoring approach in freshwater and tidal waters using the Maryland Biological Stream Survey protocol. Fifty randomly selected sites are monitored annually for the entire County. Baltimore County visits areas associated with their 319 priority watersheds every other year. The MBSS system is used to rank the conditions observed, which as summarized in the two graphs below (Very Poor = 1.00 thru 1.99, Poor = 2.00 thru 2.99, Fair = 3.00 thru 3.99, Good = 4.00 thru 4.99):

Means and one standard deviation of BIBI scores between 2003 and 2015 (2017 County MS4 report page 9-129)

BIBI rolling averages for probabilistic monitoring sites between 2003 and 2015. (2017 County MS4 report page 9-133)

H.6 Scotts Level Branch Long Term Monitoring

The purpose of this long term monitoring program is to gauge environmental results in a suburban watershed where a number of restoration projects are implemented. According to

Baltimore County, "The ability to detect effects of individual restoration projects will be dependent on the size of the restoration project in relation to the total subwatershed size. Therefore each restoration project will be monitored for project effectiveness, dependent on staff availability. The cumulative effects of restoration will be measured at the long-term in-stream monitoring site. In order to assess restoration progress in the Scotts Level Branch subwatershed, a before-after design concept will be used. Stream restoration work on Scotts Level Branch began in the fall of 2013 with the start of the McDonogh Road project. Construction was completed in the spring of 2014, which included 1,900 linear feet of stream channel, 2 acres of forested wetland, and 4 acres of floodplain wetlands, with a total of 7 acres of buffer plantings."

The map above shows the water quality monitoring station locations, including storm event and baseflow monitoring in the entire Scotts Level Branch watershed. The adjacent map shows the sites where geomorphic and biological monitoring is conducted. (2017 County MS4 report pages 9-5 and 9-7 respectively) The County has used short term findings to estimate source loads, etc. However, the monitoring timeline has not extended far enough to the begin determining trends for pollutant loads.

H.7 Before/After Monitoring: McDonogh Road Stream Restoration Project

Baltimore County stream restoration work in the Scotts Level Branch at the McDonogh Road for stream restoration and riparian enhancement began in December 2013 on approximately 1600 linear feet of stream channel and 4 acres of land surface in Scotts Level Branch, upstream of McDonogh Road. The projected was completed in 2014. Pre-implementation had been conducted and post restoration monitoring began in Autumn 2014. The map below shows the water quality monitoring sites. The monitoring includes flow, chemical (water quality), geomorphological, and biological.

Scotts Level Branch McDonogh Road stream restoration project boundaries (yellow line) and water quality monitoring sites. (2017 County MS4 report page 9-25)

Station	Status – Stream Restoration	Year	BIBI	FIBI	PHI
	Pre	2011	1.33	1.67	58
S-11	Pre	2012	1.00	2.00	53
Mainstem	Pre	2013	1.00	1.67	59
Downstream of	Post – 0 Year	2014	2.33	2.00	59
Restoration	Post – 1 Year	2015	2.00	1.67	57
	Post – 2 Year	2016	1.00	2.33	53
	Pre	2011	1.33	1.67	52
S-11a	Pre	2012	1.00	1.67	55
Mainstem	Pre	2013	1.00	2.00	58
Within	Post – 0 Year	2014	2.33	2.00	58
Restoration	Post – 1 Year	2015	2.33	1.67	57
	Post – 2 Year	2016	1.67	2	55
	Pre	2011	1.33	1.67	54
SL-12	Pre	2012	1.00	2.00	46
Tributary	Pre	2013	1.00	1.33	56
Within	Post – 0 Year	2014	NA	2.00	56
Restoration	Post – 1 Year	2015	2.67	1.33	47
	Post – 2 Year	2016	1.00	2.33	50
	Pre	2011	2.00	1.33	40
SL-12a	Pre	2012	1.33	1.00	25
Tributary	Pre	2013	1.00	1.33	43
Upstream of	Post – 0 Year	2014	2.00	1.33	43
Restoration	Post – 1 Year	2015	2.00	*	44
	Post – 2 Year	2016	1.00	1	48
	Pre	2011	2.00	1.33	52
	Pre	2012	1.00	1.67	55
SL-13	Pre	2013	1.67	1.67	66
Restoration	Post – 0 Year	2014	1.66	2.00	66
ixestor atton	Post – 1 Year	2015	2.00	1.33	45
	Post – 2 Year	2016	1.33	1.33	63

Baltimore County biological and habitat findings are shown in the table below. The County did not report finding any significant trend in the data for the 2011-2016 timeframe.

BIBI, FIBI and PHI findings for the steam restoration project at McDonogh Road (2017 County MS4 Report pages 9-27 thru 9-28.

Appendix I

Sassafras River Watershed in Cecil and Kent Counties, Maryland Watershed Eligible for 319(h) Grant Implementation Funding

Contents

- Introduction
- Milestones
- Monitoring
- Grant-Funded Implementation Projects
 - o 319(h) Grant
 - State Revolving Fund (none reported in Sassafras River watershed)
 - o Chesapeake and Atlantic Coastal Bays Trust Fund
 - BMPs reported for agricultural and urban practices progress reported
- Sassafras River Report Card

Introduction

The *Sassafras Watershed Action Plan* was completed by the Sassafras River Association, a private nonprofit organization, in December 2009. EPA accepted the plan in January 2010. The watershed plan encompasses the portion of the watershed is in Cecil and Kent Counties, Maryland. The upstream portion of the watershed in Delaware is not included in the watershed plan.

Pollutant reduction goals are in watershed plan Executive Summary Table E.5 and are reiterated in Table 5.4 on page 108. The phosphorus load reduction goal equals the TMDL limit for NPS phosphorus. The implementation measures that the plan proposes to meet the phosphorus goal will also reduce nitrogen and sediment loads. The estimates of the load reductions for nitrogen and sediment associated with these implementation measures are the basis for the plans reduction goals for nitrogen and sediment. (see watershed plan section E6.0, paragraph 1, on page xxv.)

BMP implementation goals are in the watershed plan Executive Summary Table E.4 on pages xxv thru xxviii and are reiterated in Table 5.3 on pages 105 thru 108.

Base Year for watershed plan implementation is 1999. Pollutant load reductions that year and thereafter can be counted toward meeting watershed plan goals. The Sassafras River phosphorus TMDL Section 2.2 on page 6 indicates that monitoring data used to create the TMDL was collected in 1999.

Milestones

Maryland's 2015-2019 NPS Management Plan Objective 5 lists one milestone for this watershed: annually report progress in the 319 Annual Report.

Monitoring

The Sassafras River Association (now part of ShoreRivers) conducts tidal and nontidal water quality monitoring in the Sassafras River watershed. Their most recent assessment is presented at the end of this Appendix for the Sassafras River watershed.

Maryland Department of Natural Resources information¹

- Water quality in the Sassafras River is fair due to high sediment levels. Habitat quality for underwater grasses is poor due to poor water clarity and high algal densities. Summer bottom dissolved oxygen levels are good.
- The Sassafras River is in the 'High Agriculture/Low Developed' land use category. Nitrogen and phosphorus levels are higher than most rivers and sediment levels are moderate. Algal levels are among the highest of all the rivers and water clarity is very low. Summer bottom dissolved oxygen levels are moderate.

Maryland Department of the Environment information ^{2, 3}

- MDE nontidal monitoring projects funded by the 319(h) Grant have not been active in this watershed.

¹ DNR. *Water Quality Summary 2013-2015*. Preliminary report received via personal communication 11/6/17.

 ² Maryland Department of the Environment. MDE Targeted Watershed Project. 319(h) Grant FFY2016 Project 4.
 ³ Maryland Department of the Environment. MDE Biological Assessment for Water Quality Protection and TMDL Implementation. 319(h) Grant FFY2016 Project 5.

	Sassafras River Watershed										
	2009-SFY17 Completed 319(h) NPS Implementation Projects - 319(h) Grant and State Revolving Fund										
Project Summary Project Expenditures								Pollut	ant Load Red	uction	
Aron/Lond	Name/Description	End	Crant Funding Source	Grant	Funds	Non Federal	Total	Nitrogon (lb/yr)	Phosphorus	Sediment	
Alea/Leau	Area/Lead Name/Description		Grant Funding Source	Federal	State	Match	Total	Niti ogen (10/yr)	(lb/yr)	(ton/yr)	
SRA	Galena Elementary School stormwater	2013	319 FFY12 #8	\$14,000.00		\$9,333.33	\$25,000.00	1.38	0.24	0.05	
SRA	Phipps Treatment Wetlands & sediment traps	SFY15	319 FFY13 #8	\$50,000		\$33,333	\$83,333	99.3	19.9	2.6	
	No 319 project completed in SFY17							0.0	0.0	0	
	No SRF projects in this watershed							0.0	0.0	0	
TOTAL \$64,000.00 \$0.00 \$42,666.67 \$108,333.33 100.7 20.2									2.65		

SRA: Sassafras River Association, a private nonprofit organization. For phosphorus pollutant load reduction, BMPs installed 1999 and later can be counted toward watershed plan implementation.

	SFY17 NPS Implementation	n Proj	ects In Progress -	319(h) Grant and State Revolving Fund - Sassafras River Watershed						
	Project Summary			Pollutant Load Reduction						
Area/Lead	Name/Description	End	Grant Funding Source	Grant	Funds	Non Federal	Total	Nitrogen (lb/yr)	Phosphorus	Sediment
Alea/Leau	Name/Dsescription	Date	Grant Funding Source	Federal	State	Match	10(a)	(ib/yi)	(lb/yr)	(ton/yr)
Kent SCD	Harbor View and Colchester Farms (SFY17 pending execution of subaward)	TBD	319 FFY17 #10	\$216,234		\$144,156	\$360,390	2,783.0	162.0	65.85
Kent SCD	Starkey Project (SFY17 pending execution of subaward)	TBD	319 FFY17 #11	\$144,514		\$96,343	\$240,857	1,992.5	105.5	0.67

Maryland 319 NPS Program SFY17 Annual Report Appendix I Sassafras River Page 4 of 8

Sassafras River Watershed

Chesapeake and Atlantic Coastal Bays Trust Fund

SFY17 NPS Implementation Project Status (1)

Year Funded	PartnerCD	ProjectTitle	ProjectType	County	TrustFund Dollars	Status	BMP Units	BMPs Reported	Annual LbsN	Annual LbsP	Annual TonsTSS
FY12	Md Dept of Agriculture	Poultry Manure Subsurfer	Agricultural Practices	Cecil	65,628.00	Complete			7,800.0	7,500.0	0
FY12	Sassafras River Association	Phipps Dairy Farm Vertical Flow Treatment Wetland	Wetland Restoration	Kent	224,350.00	Complete			75.0	7.0	0.00155
	Kent County Public	Sassafras Natural Resource Management Area Waterway and Drainage Buffer Restoration and Enhancement Project	Trac Dianting Projects	Vont	29,988.80	Complete	0.0*05	15	112 5	19.2	2.4
	Schools	Rudds Landing	Stream Destartion	Casil	170 964 00	Complete	acres	15	442.3	18.3	3.4
FY13	C C D'	Crowford Treatment Watland	Stream Kestoration	Cecil	170,804.00	Complete			2 002 0	90.0	1.1
	Sassafras River		Stormwater Management	Cecil	165,100.50	Complete			2,993.0	863.0	12
	Association	Rt 301 Stormwater Conveyance	Stream Restoration	Cecil	440000	Complete			120	108.8	12.1
		Salfner Farm Stream Restoration	Stream Restoration	Cecil	90,000.00	Complete			120.0	40.8	93
	Chesapeake Bay Trust	Greener Wheeler Avenue Project, Phase 1	Stormwater Management	Kent	43000	Complete			0.0	0.0	0
FY14	Schools	Sassafras Natural Resource Management Area Site II	Tree Planting Projects	Kent	16,865.00	Complete	acres	3.65	162.3	6.7	1.24575
	Sassafras River Association	Turners Creek Natural Resource Area Ravine Restoration	Stream Restoration	Kent	121,643.80	Complete			37.9	6.7	0.4
FY16	Washington College	Leigh	Agricultural Practices	Kent	14,102.05	Complete			133.0	7.9	3.6
FY16	Washington College	Oldfield Farm	Agricultural Practices	Kent	18630	Complete			190	11.38	5.3
FY16	Washington College	Leigh Farm	Agricultural Practices	Kent	4657.5	Complete			47.7	2.85	1.32
	(1) Maryland DNR provid	ded this data 11/5/17 and indicated it is the full e	xtent available.	TOTALS	1,404,829.65				12,121.4	8,663.4	133.5
		Harbor View Farm Project 1 - Multi-celled Treatment Wetland	Agricultural Practices	Kent	85,000.00	Design/Plannir	g		112.0	11.0	1.1715
		Harbor View Farm Project 2 - Forebay and Bioretention	Agricultural Practices	Kent	23,000.00	Design/Plannir	g		359.0	29.0	5.081
	Ridge to Reefs	Harbor View Farm Project 3 - Woodchip Infiltration Trench	Agricultural Practices	Kent	25,000.00	Design/Plannir	g		53.0	0.0	0
FY16		Colchester Farm Project 1 - Multi-celled Treatment Wetland	Agricultural Practices	Kent	44,000.00	Design/Plannir	g		94.0	10.2	1.264
		Colchester Farm Project 2 - Woodchip Infiltration Trench	Agricultural Practices	Kent	23,000.00	Design/Plannir	g		51.0	0.0	0
	Town of Bottorton	Main St. Outfall	Stormwater Management	Kent	187,775.00	Design/Plannir	g		44.1	13.9	5.511
	Town of Detterton	Battarton Baash Darling Lat	Gi Mana	IZ	204 500 00				1.0	07	0.105

		Betterton Beach Parking Lot	Stormwater Management	Kent	304,500.00	Design/Planning		1.0	0.7	0.185
EV17	Sassafras River Associati	Starkey Farm	Stormwater Management	Kent	286500	Design/Planning		2300	99	35
1,111	Washington College	Natural Lands: Sassafras NRMA	Agricultural Practices	Kent	60955	Design/Planning		572	34	15
FY18	Sassafras River Associati	Oakshire/ISE Floodplain Restoration	Stream Restoration	Cecil	992492	Design/Planning		194	135	14.8
	(1) Maryland DNR provid	ded this data 2/21/17 and indicated it is the full ex	TOTALS	2,032,222.00			3,780.1	332.8	78.01	

Maryland 319 NPS Program SFY17 Annual Report Appendix I Sassafras River Page 5 of 8

Appendix I Sassafras River Page 5	o of 8										Prior '	Years' Pi	rogress T	oward V	Vatershe	d Plan
SFY2017 Agricultural BMP Imp	lement	tation				Sassafras Pivor	Watorsh	ad Dia	n				G	Dais		
Sassafras River Watershed						Sassallas River	vvaleisi	ieu Fia			Drior	Extracte	ed from Sta	ate Data re	ported by	MDE to
In Cecil County and Kent Coun	ty, MD		Estimated P	ollutant Load	Reduction	Management Measu	ures		Pro	ogress	to		EPA	Bay Prog	am	
Agricultural BMP	Unit	SFY16 Total	Nitrogen Total (lbs)	Phosphorus Total (lbs)	Sediment Total (tons)	Watershed Plan Table 5.1	Goal	Units	SFY14- SFY17	Units	SFY14	SFY14	SFY15	SFY16		Units
Annual Practices		16.503	=1 05= 1		100.00		5000									
Cover Crops	acres	16,537	/1,35/.1	375.41	199.02	Cover Crops (#17, 19)	5000	acres/yr								
Multi-Year Practices							_						0	0		
Alternative Crops	acres	0					_			acres	60	0	0	0		acres
Amendments for Treatment of Ag Waste	AU	0					_		0	AU	tin	0	0	0		AU
Animal Mortality Facility	count	0	400.0	12.04	2.02		_		01.0	count	or	0	17.0	0		count
Conservation Cover	acres	48.3	408.6	13.04	3.02		_		91.2	acres	eb.	0	17.3	25.60		acres
Conservation Plans/SCWQP	acres	2011	1,592.5	130.8	67.76		_		11,674	acres	is r	3512	3824	2,327.00		acres
Critical Area Planting	acres	0					_		0.5	acres	th	0.5	0	0		acres
Dead Bird Composting Facility	acres	0					_			acres	ith	0	0	0		acres
Fencing	feet	0					_			Teet	>	0	0	0		leet
Field Border	acres	0					_		1 1 1	acres	ble	0	0	0		acres
Filter Strip	acres	0	217.0		1 70		_		1.2	acres	atil	1.2	0 24	1 20		acres
Grassed Waterway	acres	7.6	217.9	4.4	1.70		_		14.04	acres	du	5	0.24	1.20		acres
Horse Pasture Management	acres	0.15	1.2	0.2			_		1.25	acres	Sor.	0	0	0		acres
Loafing Lot Management System	acres	0.15	1.3	0.2	0		_		1.25	acres	ot o olo ₍	1	0.1	0		acres
Pasture & Hay Planting	acres	0					_			acres	od c	0	0	0		acres
Prescribed Grazing	acres	0					_		0	acres	s is thc	0	0	0		acres
P-sorbing Materials	acres	0							0	acres	ort: net	0	0	0	i	acres
Riparian Forest Buffer	acres	0	0.0	2.2	00.00	#15 Stream Buffers	2	miles	26.0	acres	u sbc	0	0	0	i	acres
Riparian Herbaceous Cover	acres	1.4	0.0	2.2	90.89		_		26.2	acres	re	24.8	0	0	i	acres
Roof Runoff Structure	count	1	84.7	14.6	0.14		_		3	count	na	2	0	0		count
Stream Restoration Ag	feet	0					_		/20	feet	L L L	0	/20	0	1	reet
Tree/Shrub Establishment	acres	0					_		0.25	acres	l a	0	0.25	0	i	acres
Waste Storage Facility	count	0								count	s ir	2	0	0		count
Wastewater Treatment Strip	acres	0							0	acres	cal	0	0	0	i	acres
Water Control Structure	count	0							6	count	<u> </u>	2	4	0		count
Watering Facility	count	0							0	count	βλ	0	0	0		count
Wetland Creation	acres	0				#21 Wetland Creation	5	count	0.5	acres	ta	0	0.5	0	i	acres
Wetland Restoration	acres	0							0	acres	Da	0	0	0	i	acres
Windbreak/Shelterbelt Establishment	feet	0							0	feet		0	0	0	1	reet
Total Annual Practices (2)			71,357.1	375.4	199.02											
Total Multi-year Practices			2,304.9	165.3	163.5											
Total Pollutant Load Reduction			73,662.0	540.8	362.5											
"SFY17 Total" column data is MDA 1/22/18	B. MDE us	ed MAST t	o estimate pollut	ant load reductio	n.											
The Maryland Department of Agriculture d	efines ann	nual practi	ces as cover crops	s, nutrient mgmt,	manure											
transport, conservation tillage & high resid	ue tillage.															

Maryland 319 NPS Program SFY17 Annual Report Appendix I Sassafras River Page 6 of 8

SFY17 Urban BMPs Implemented												Prior Years' Progress Toward Waters				tershed	d Plan
Sassafras River Watershed						Sassafras Rive	er Wate	rshed	Plan					Goal	S		
In Cecil County and Kent County, M	Maryland											Data	Extract	ed from	State Da	ta repo	orted by
	_	DMD.	Estimated	Pollutant Load	d Reduction					Progres	SS	reported	ſ	MDE to E	EPA Bay F	Program	n
Urban Management Practices	Unit	Reported	Nitrogen Ib/vr	Phosphorus lb/yr	Sediment Ib/yr	Watershed Plan Table 5.1	GOAL	Units	SFY17	SFY14- SFY17	Units	by locals	SFY14	SFY15	SFY16		Units
Bioretention	acres	0	, j .								acres		0	0	0		acres
Cisterns and Rain Barrels	acres	0									acres	ing	0	0	0		acres
Bioswale	acres	0									acres	ort	0	0	0		acres
Disconnection of Rooftop Runoff	acres	0									acres	e de	0	0	0		acres
Dry Detention Ponds & Hydro Structures	acres	0									acres	is r	0	0	0		acres
Dry Extended Detention Ponds	acres	0									acres	th	0	0	0		acres
Dry Well	acres	0									acres	lith	0	0	0		acres
Filtering Practices	acres	0									acres	≥	0	0	0		acres
Forest Conservation	acres	0									acres	ible	0	0	0		acres
Forest Harvesting Practices	acres	0									acres	pat	0	0	0		acres
Infiltration Practices	acres	0									acres	ŭ,	0	0	0		acres
Permeable Pavement	acres	0									acres	og)	0	0	0		acres
Rain Garden	acres	0									acres	Joh	0	0	0		acres
Reduction of Impervious Surface	acres	0									acres	is I	0	0	0		acres
Riparian Forest Buffers on Urban Lands	acres	0									acres	Ints	0	0	0		acres
Septics Connections to Sewers	count	0									count	od 2	0	0	0		count
Septic Denitrification Critical Area	count	4	31.20							10	count		0	3	3		count
Septic Denitrification outside of 1000 feet	count	2	6.20			#5, #6, #10 Septic system upgrades	150	count	8	5	count	na	0	1	2		count
Septic Denitrification within 1000 feet	count	2	11.20							12	count	u u	0	9	1		count
Septic Tank Pumpout	count	0									count	u a	0	0	0		count
Stream Restoration Urban	feet	0									feet	ls i	0	0	0		feet
Street Sweeping	acres	0									acres) ca	0	0	0		acres
Tree Planting	acres	0									acres		0	0	0		acres
Urban Forest Buffer	acres	0									acres	a b	0	0	0		acres
Wet Extended Detention	acres	0									acres	Dat	0	0	0		acres
Wet Ponds & Wetlands	acres	0									acres		0	0	0		acres
						#1 Road retrofit & stream restore	3	count									
						#12 Stabilize eroding ravines	1	miles									
						#13 Stabilize eroding shoreline	0.5	miles					1				
Urban BMPs Total (1) "BMPs Reported" is MDE data 1/25/18.	I Pollutant Lo	ad Reduction	48.60 ate polutant lo	(ad reduction.	0 0	Note: The watershed plan goals tracked in this table reporting. All other watershed plan goals differ and	are consiste	nt with unities t	ts of measu	re used for	State						

GLOBAL CHANGES IMPACT OUR RIVER

According to NASA and NOAA scientists, the past three years were the hottest on record

- each year topping the previous one. The signs of a globally changing climate become more evident with each passing year as incrementally increasing temperatures lead to more frequent and severe storms and prolonged coastal flooding.

But how do these changes impact our local communities and the ecosystem of the

Sassafras River? Below are just a few examples of how the changing global climate can impact our community, and what we can do to mitigate these negative and potentially dangerous effects.

Warmer air temperatures result in an increase of water temperatures in the Chesapeake Bay and its tributaries (ie: the Sassafras River). While swimmers may rejoice in the warmer water and longer swim season, it also threatens our local water bodies by fostering rapid growth of bacteria and algae. This sometimes results in harmful algal blooms, and can result in local fish kills.

In addition, the seasonal uptick in storms will likely result in more severe coastal flooding. As high water recedes, it carries fertilizers, bacteria, spilled oil, trash, and even leaked septic effluent, transporting the pollutants into our rivers and bays - further impairing our precious water bodies.

By monitoring important river health indicators, such as temperature, turbidity, dissolved oxygen, and nutrients, Sassafras River Association tracks seasonal and yearly trends in the health of the Sassafras. The monitoring efforts by our RIVERKEEPER® and year-round volunteers allow us to identify and fix sources of pollution, helping to restore and protect our river.

Sassafras Samplers work hard for the river!

Remember that what we do on land has a profound impact on the quality of the water that we all enjoy and rely on. The pollution in the Sassafras is local pollution. It comes from the land around the river.

Clean water increases tourism, business, and the value of properties in the watershed.

We all benefit from a cleaner river. As water temperatures continue to rise in future years, we must be more aware of how our everyday actions affect the health of our beautiful Sassafras River.

Become A Sassafriend!

Make a gift to support SRA's efforts to protect and restore the Sassafras River.

Member Giving Levels

\$1000 or more - Sassafras Steward
 \$500 or more - Sassafras Protector
 \$100 or more - Sassafras Champion

____ up to \$100 - Sassafras Supporter

Give securely online at www.sassafrasriver.org or mail this form and your contribution made payable to Sassafras River Association to P.O. Box 333 Georgetown, MD 21930

The Sassafras River Association is a 501(c)(3) nonprofit organization. Donations are tax-deductible to the extent allowed by law.

WHAT'S THE DAM PROBLEM?

The Susquehanna River is responsible for much of the sediment and nutrient pollution in the Chesapeake Bay, but the Conowingo Dam is sometimes targeted with the blame. The Dam has been an effective sediment trap for nearly 90 years, but the sediment trap behind the Dam is so full now that fast flowing waters from large storms in the Susquehanna watershed cause scouring, and pour sediment into the Bay in large quantities.

Some claim that when scouring occurs at the Dam, the work of watershed organizations like the Sassafras River Association is negated. To the contrary, a decade of extensive tidal and non-tidal water quality testing clearly shows that the highest concentrations of sediment and nutrients in the Sassafras are in the headwaters of the river - and that's where we implement our restoration projects. There are legitimate reasons to advocate for dredging the sediment trap at the Conowingo Dam, but the myth that storm surges negate the work of watershed organizations is not one of them.

If we are serious about our goal to "Save the Bay", we must concentrate on cleaning the rivers that flow into the Bay. Our restoration projects will continue to provide benefits into the future - regardless of what happens at the Conowingo Dam.

SRA is a member of WATERKEEPER® ALLIANCE, Waterkeepers Chesapeake, and a number of other organizations in order to network, communicate issues, and share initiatives. We are active in the Cecil County Watershed Implementation Plan (WIP) Advisory Committee and the Kent County WIP Committee. We also participate in the Upper Shore WIP and the Eastern Shore WIP groups.

Name:	
Address:	
Ph/Email:	
L S	ave resources - thank me by email:
🗌 I	would like to volunteer

sassafrasriver.org | 410-275-1400 | riverkeeper@sassafrasriver.org

LOCAL	šassafras River Associatior -O. Box 333 Georgetown, MD 21930	n ***************************	PRSRT STD ECRWSS U.S. POSTAGE PAID HDM BFTAII
		LOCAL	

Your Support helps to restore the Sassafras... Join Today!

Sassafras River Association

SASSAFRAS RIVER Report Card 2017

Science-based Advocacy Restoration Outreach Restoring the health of the Sassafras River

WE LOVE BMPs!

A BMP, or Best Management Practice, is any endeavor that reduces the negative impact of human activity on the river. There are many BMP's being implemented by homeowners, farmers, and boaters in our watershed.

The wastewater treatment plants in Betterton and Galena are being upgraded with Enhanced Nutrient Removal systems, greatly reducing nitrogen and phosphorus emissions into our waters.

Farmers are implementing grass waterways, cover crops, vegetative buffers, no-till practices, and GPS-targeted nutrient application. The Sassafras River Association has worked with local farmers to install treatment wetlands, and to construct projects which reduce gully and stream erosion.

Homeowners are using rain barrels, constructing rain gardens, removing or reducing impervious surfaces, installing Best Available Technology septic systems, routinely pumping out their septic tanks, and applying fertilizer only after having a soil test to establish the amount needed. These BMPs are not only good for the river, but also may enhance property values!

More and more boaters understand that they should always use pump-out facilities at marinas. It's important to know that bacteria-killing marine sanitation devices do not remove any nitrogen or phosphorus, and therefore add to the pollution of the river.

The BMP that we all can implement is proper trash disposal. Every April, the Sassafras River Association conducts a watershed cleanup where volunteers walk the river banks and roads in our watershed picking up trash. The amount of trash we collect every year is astonishing.

We invite you to join the SRA! Help us educate more and more people, so that every resident and visitor in the Sassafras River Watershed can say, "We love BMP's!"

What do grades mean?

Some or few water quality and biological health indicators meet desired levels (20-39%) leading to poor habitat conditions for fish and shellfish. D

Very few or no water quality and biological health indicators meet desired levels (0-19%) leading to very poor habitat conditions for fish and shellfish.

SCIENCE-BASED WATER QUALITY SAMPLING:

THIS ANNUAL SASSAFRAS RIVER REPORT CARD is primarily a report on the water quality of the tidal and non-tidal segments of our watershed. Water samples are taken and analyzed either with our own scientific equipment or at the University of Delaware. SRA uses protocols and standard operating procedures established by the Mid-Atlantic Tributary Assessment Coalition.

TIDAL: Eight sites on the Sassafras River are sampled for water quality indicators dissolved oxygen, specific conductivity, temperature, total nitrogen, total phosphorus, salinity, turbidity, pH, and chlorophyll-a. Our RIVERKEEPER™ samples seven sites weekly from April through October, and one site is electronically monitored by the Maryland Department of Natural Resources for the same indictors every 15 minutes throughout the year. The grading includes SAV (submerged aquatic vegetation), which is measured in acres by the Virginia Institute of Marine Science.

NON-TIDAL: The Sassafras River Association is fortunate to have 24 trained - and periodically re-trained - volunteers who conduct year round water quality monitoring at 16 sites on the non-tidal streams that run into the Sassafras River. We proudly call our volunteers the "Sassafras Samplers."

River (Ti	dal) Health Ind	icators	Lower River	Upper River
۲	Dissolved Oxy	gen	A	A
	Water Clarity		C	C
	Chlorophyll-a		A	D
W	Aquatic Vegeta	ation	F	F
TN	Nutrients	Total Nitrogen	A	B
TP	Nutrents	Total Phosphorus	A	C

OUR MISSION:

The Sassafras River Association is dedicated to promoting good water quality, a balance among recreation, wildlife and economic activity, and an educated community that takes action to restore and maintain the health of the watershed.

Creek (Non-Tidal) Health Indicators

solved Oxygen	A
rbidity	F

TN	Total Nitrogen	D
TP	Total Phosphorus	B
C st	Creek Bed Organisms	F

Appendix J

Upper Choptank River Watershed in Caroline County, Maryland Watershed Eligible for 319(h) Grant Implementation Funding

Contents

- Introduction
- Milestones
- Water Quality Monitoring Activity, Overall Condition, Trends
 - o Maryland DNR summary analysis
 - Nontidal Index of Biological Integrity
 - Nontidal Water Quality Monitoring Before/After Plan Implementation
- Grant-Funded Implementation Projects
 - 319(h) Grant and State Revolving Fund
 - Chesapeake and Atlantic Coastal Bays Trust Fund
- BMPs reported for agricultural and urban practices for State Fiscal Year 2016.

Introduction

The *Upper Choptank River Watershed Based Plan* was completed by Caroline County in November 2010 and EPA accepted the plan in December 2010. The part of the watershed encompassed by the watershed plan is in Caroline County, Maryland. Two parts of the Choptank River watershed are not included in the plan: 1) the upstream portion of the watershed in Delaware and a very small area of Queen Anne's County, and 2) the downstream portion of the watershed in the State 8-digit watershed designated 02130404 in Talbot County and further downstream.

Pollutant reduction goals are in watershed plan Table 3 on page 13.

BMP implementation goals are in three parts of the plan:

- Agricultural BMPs in Table 4 on page 15
- Urban BMPs in Table 5 on page 18
- Septic system upgrades or connection to treatment plants in Table 6 on page 20.

Base Year for watershed plan implementation is 2002. Pollutant load reductions that year and thereafter are counted toward meeting watershed plan goals. The baseline year and plan goals are derived from Maryland Tributary Team work for the Choptank River Basin. No TMDL for nutrients and/or sediment applied to the watershed at the time the watershed plan was written.

Milestones

Maryland's 2015-2019 NPS Management Plan Objective 5 includes two milestones for this watershed:

- Annually: Report progress in the 319 Annual Report, and
- 2015: Assess implementation progress and update the plan if needed. Caroline County completed review and determined that an update was not necessary.

Water Quality Monitoring Activity, Overall Condition, Trends

	Maryland DNR's water quality analysis Summary Information ¹
Nontidal	Nitrogen, phosphorus and sediment loads from the watershed to the non-tidal waters of the Choptank have increased. Nitrogen and phosphorus levels in the water have increased when the effect of flow is accounted for
Tidal	Maryland DNR's most recent reporting said that water quality in the tidal upper Choptank is poor. Nitrogen, phosphorus and sediment levels are too high. Habitat quality for underwater grasses is poor because algal densities are too high and water clarity is poor. Summer bottom dissolved oxygen levels are good. There are no long-term water quality monitoring stations in the middle Choptank River.
	The Choptank River is in the 'High Agriculture/ Low Developed' land use category. In the Choptank River overall, nitrogen and phosphorus levels are moderate compared with other high agricultural systems. Sediment and algal densities are low compared to other high agricultural systems. Water clarity is high and summer bottom dissolved oxygen levels are moderate compared with other high agricultural systems.

Nontidal – Index of Biological Integrity²

MDE's 319(h) Grant-funded biological monitoring project samples benthic macroinvertebrates and fish in healthy nontidal streams as part of Maryland's Tier II Antidegradation Program. These two measures serve as a gauge of existing stream health using a scale of 1 to 5:

good (4.0-5.0), fair (3.0-3.9), poor (2.0-2.9), very poor (1.0-1.9)

BIBI = benthic index of biological integrity

FIBI = fish index of biological integrity

In previously identified healthy waters within the Upper Choptank River watershed in Caroline County four sites have been sampled to determine if healthy conditions are continuing. A score of 4.000 or above means Tier II healthy water criteria are continuing to be met. A lower score indicates that conditions have degraded below Maryland's Tier II healthy water criteria:

- Forge Branch MDE-UPCK-311-A-2016
 - FIBI 4.667 on 6/9/16
- Marsh Creek MDE-UPCK-201-A-2014
 - BIBI 3.857 on 3/12/14, FIBI 4.67 in 2014
- Unnamed Tributary MDE-UPCK-119-A-2015
 - o BIBI 4.143 on 3/4/15, FIBI 3.667 on 8/4/15
- Watts Creek MDE-UPCK-212-A-2016
 - o FIBI 4.000 on 6/14/16

The 2016 fish sampling results are presented in tables on the next page.³

¹ Maryland Department of Natural Resources. *Water Quality Summary 2013-2015*. Preliminary report received via personal communication 11/6/17 from Renee Karrh.

² Maryland Department of the Environment. MDE Biological Assessment for Water Quality Protection and TMDL Implementation. 319(h) Grant FFY2016 Project 5.

³ Maryland Department of the Environment. *Q3Report MDE Biological Assessment FFY-16 GRTS#5 thru 3-30-2017*. Charles Poukish. May 8, 2017. 47 pages.

Forge Branch (Upper Choptank River tributary), Station MDE-UPCK-311-A-2016 FIBI = 4.667 June 9, 2016													
Common Name	Tolerance	Native or Introduced	Trophic Status	Lithophilic Spawner	Composition	# sampled @ Station							
Least Brook Lamprey	NOTYPE	Ν	FF	Ν	В	13							
American eel	NOTYPE	Ν	GE	Ν		53							
Fallfish	1	Ν	GE	Υ		15							
Creek chubsucker	NOTYPE	Ν	IV	Ν	R	3							
Tadpole madtom	NOTYPE	Ν	IV	Ν	В	8							
Yellow bullhead	NOTYPE	Ν	OM	Ν		1							
Chain pickerel	NOTYPE	IY	TP	Ν		1							
Redfin pickerel	Т	IY	TP	Ν		13							
Eastern mudminnow	Т	Ν	IV	Ν		82							
Pirate perch	Т	Ν	IV	Ν		9							
Bluegill	Т	IC	IV	Ν		2							
Bluespotted sunfish	NOTYPE	Ν	IV	Ν		1							
Green sunfish	Т	IC	GE	Ν		6							
Pumpkinseed	Т	IY	IV	Ν		13							
Redbreast sunfish	NOTYPE	IY	GE	Ν		8							
Tessellated darter	Т	Ν	IV	Ν	В	52							

Watts Creek (Upper Choptank tributary), Station MDE-UPCK-212-A-2016 FIBI = 4.000 June 14, 2016												
Common Name	Tolerance	Native or Introduced	Trophic Status	Lithophilic Spawner	Composition	# sampled @ Station						
Least Brook Lamprey	NOTYPE	Ν	FF	Ν	В	14						
American eel	NOTYPE	Ν	GE	Ν		41						
Fallfish	1	Ν	GE	Υ		5						
Satinfin shiner	1	Ν	IV	Ν		23						
Spottail shiner	1	Ν	OM	Υ		2						
Brown bullhead	Т	Ν	OM	Ν		3						
Margined madtom	1	IY	IV	Ν	В	20						
Tadpole madtom	NOTYPE	Ν	IV	Ν	В	6						
Yellow bullhead	NOTYPE	Ν	OM	Ν		3						
Chain pickerel	NOTYPE	IY	TP	Ν		2						
Redfin pickerel	Т	IY	TP	Ν		4						
Eastern mudminnow	Т	Ν	IV	Ν		5						
Pirate perch	Т	Ν	IV	Ν		1						
Bluegill	Т	IC	IV	Ν		22						
Green sunfish	Т	IC	GE	Ν		21						
Largemouth bass	Т	IC	TP	Ν		1						
Pumpkinseed	Т	IY	IV	Ν		12						
Redbreast sunfish	NOTYPE	IY	GE	N		36						
Tessellated darter	Т	Ν	IV	Ν	В	27						

Nontidal - Water Quality Monitoring Before/After Plan Implementation

MDE nontidal monitoring projects funded by the 319(h) Grant have not been active in this watershed. $^{\rm 4}$

⁴ Maryland Department of the Environment. MDE Targeted Watershed Project. 319(h) Grant FFY2016 Project 4.

Maryland 319 NPS Program 2017 Annual Report Appendix J Upper Choptank River Page 4 of 7

	Upper Choptank River Watershed												
	2004-SFY17 Comp	oleted	NPS Implementati	on Grant Pro	ojects - 319(l	h) Grant and	State Revolv	ving Fund					
	Project Summary			Project	t Expenditure	S		Pollut	ant Load Red	uction			
A rea/Lead	Name/Description	End	Grant Funding Source	Grant	Funds	Match	Total	Nitrogen	Phosphorus	Sediment			
mea/Ecau	Nume/Description	Date	Grant Funding Source	Federal	State	Watch	Total	(lb/yr)	(lb/yr)	(ton/yr)			
	Upper Choptank Cover Crop Demo	2004	319 FFY03 #12	\$48,161.00		\$32,107.33	\$80,268.33	0	0	461.8			
MDA /	Upper Choptank Cover Crop Demo	2005	319 FFY03 #21	\$114,000.00		\$76,000.00	\$190,000.00	23,097	642	0			
	Agricultural Technical Assistance	2005	319 FFY04 #13	\$49,949.00		\$33,299.33	\$83,248.33	0	0	393.1			
Caroline Soli	Upper Choptank Cover Crop Demo	2006	319 FFY04 #20	\$150,000.00		\$100,000.00	\$250,000.00	19,465	458	0			
Conservation District (SCD)	Agricultural Technical Assistance	2007	319 FFY04 #32	\$55,990.64		\$37,327.09	\$93,317.73	20,646.14	1,979.37	99.89			
	Agricultural Technical Assistance	2006	319 FFY05 #9	\$39,167.70		\$26,111.80	\$65,279.50	9,139.8	1,461.3	23.84			
	Upper Choptank Cover Crop Demo	2007	319 FFY05 #18	\$121,600.00		\$81,066.67	\$202,666.67	33,192	0	0			
Caroline SCD	Agricultural Technical Assistance	2010	319 FFY07 #21	\$56,256.00		\$37,504.00	\$93,760.00	33,169.01	5,832.24	107.97			
Carolille SCD	Agricultural Technical Assistance	2009	319 FFY08 #2	\$48,314.98		\$32,209.99	\$80,524.97	82,140.24	2,707.31	41.2			
	DPW Stormwater Retrofits	2012	319 FFY10 #7	\$46,213.30		\$30,808.87	\$77,022.17	11.39	7.89	0.91			
	U. Choptank Watershed Restoration	2014	319 FFY12 #6	\$130,781.17		\$87,187.45	\$217,968.62	8.01	0.85	0			
Caroline Co.	U. Choptank Watershed Restoration	2014	319 FFY13 #6	\$138,378.63		\$92,252.42	\$230,631.05	16.06	2.69	0.23			
	Volunteer Fire Comp. SWM upgrades	SFY16	319 FFY12 #14	\$37,834.00		\$25,222.67	\$63,056.67	4.29	0.75	0.12			
	Dept. Emergency Services Porous Parking	SFY16	319 FFY14 #6	\$137,449.01		\$91,632.67	\$229,081.68	2.37	0.17	0.01			
		ТОТ	AL for completed projects	\$1,174,095.43	\$0.00	\$782,730.29	\$1,956,825.72	220,891.3	13,092.6	1,129.07			
		T	OTAL Pollutant Load Redu	ction for Multi-Ye	ar Projects exclud	ing cover crop proj	ects (grey shaded)	145,137.3	11,988.1	666.91			

	SFY17 NPS Implementation Projects in Progress - 319(h) Grant and State Revolving Fund - Upper Choptank River Watershed												
	Project Summary			Proj	Future Po	Future Pollutant Load Reduction							
Load	Name/Description	End	Cront Funding Source	Grant	Funds	Non Federal	Total	Nitrogen	Phosphorus	Sediment			
Leau	Name/Description		Grant Funding Source	Federal	State	Match	Total	(lb/yr)	(lb/yr)	(ton/yr)			
Caroline County	Lockerman Middle School Stormwater Retrofits (SFY17 pending execution of subaward)	TBD	319 FFY17 #7	\$100,000.00		\$66,667.00	\$166,667	3.23	0.38	0.09			
Caroline Soil Conservation District	Morton Farm Bio-retention and Bioswale Project (SFY17 pending execution of subaward)	TBD	319 FFY17 #8	\$88,220.00		\$53,813.00	\$142,033	98	162	65.85			

Footnote: No State Revolving Fund projects have been reported during the period 2004 to SFY2017.

Maryland 319 NPS Program SFY17 Annual Report Appendix J Upper Choptank River Page 5 of 7

Upper Choptank River Watershed Chesapeake and Atlantic Coastal Bays Trust Fund SFY 2017 NPS Implementation Project Status (1)

Year					TrustFund		BMP	BMPs	Annual	Annual	Annual
Funded	PartnerCD	ProjectTitle	ProjectType	County	Dollars	Status	Units	Reported	LbsN	LbsP	TonsTSS
		Choptank Wetlands Restoration: Royal Oak	Wetland Restoration	Statewide	10,804.00	Complete			143.6	9.7	1.8
		Choptank Wetlands Restoration: Knox Farm	Wetland Restoration	Statewide	10,143.00	Complete			301.56	20.37	3.68
		Choptank Wetlands Restoration: Morris Farm	Wetland Restoration	Statewide	14,754.25	Complete			114.88	7.76	1.4
FY13	Delmarva RC & D Council	Choptank Wetlands Restoration: Snowdon Farm	Wetland Restoration	Statewide	9,747.95	Complete			545.68	36.86	6.65
		Choptank Wetlands Restoration: Toulson Farm	Wetland Restoration	Statewide	25,650.00	Complete			215.4	14.55	2.63
		Choptank Wetlands Restoration: Durham Farm	Wetland Restoration	Statewide	13,500.00	Complete			129.24	8.73	1.58
		Choptank Wetlands Restoration: Brenner Farm	Wetland Restoration	Statewide	13,000.00	Complete			157.96	10.67	1.93
		Ober Community Park (Greensboro)	Tree Planting Projects	Caroline	3,771.09	Complete			5.89	0.25	0.04
		Ganey's Wharf Public Landing (west of Harmony)	Tree Planting Projects	Caroline	2,285.76	Complete			2.87	0.2	0.03
	Caroline County	Marydel Community Park (Marydel)	Tree Planting Projects	Caroline	14,072.00	Complete			148.19	6.45	1.29
FY14		Town of Denton (Sharp Road)	Tree Planting Projects	Caroline	10,592.00	Complete			8.6	0.59	0.09
		Caroline Co. Dept. of Emergency Services Facility	Tree Planting Projects	Caroline	11,946.00	Complete			17.19	1.17	0.189
	Town of Greensboro	Greensboro Stream Restoration Project	Stream Restoration	Caroline	99,696.00	Complete			8.12	0.136	15
	Ducks Unlimited	Furr	Wetland Restoration	Statewide	38,897.43	Complete			416	34.5	12.2
	Midshore Riverkeeper Conservancy	Voorhees	Agricultural Practices	Caroline	17,638.00	Complete			1609	0	0
EV15	Delmarva RC & D Council	Street #1	Wetland Restoration	Caroline	2,201.40	Complete			15.55	1.37	417
1115	Delmarva RC & D Council	Street #2	Wetland Restoration	Caroline	2,931.10	Complete			33.33	2.94	194
	Delmarva RC & D Council	Street #3	Wetland Restoration	Caroline	1,842.80	Complete			15.55	1.37	194
	(1) Maryland DNR provided this da	ata 11/30/17 and indicated it is the full extent available	e.	TOTALS	303,472.78				3,888.6	157.6	853.5
FY17	Town of Greensboro	Choptank River Park	Stormwater Management	Caroline	299,734.00	Design/Planni	ng		0	0	0
FY14	Town of Greensboro	Choptank River Park at Greensboro	Wetland Restoration	Caroline	0.00	Design/Planni	ng		0	0	0
FY17	Delmarva RC & D Council	Wegener Wetland	Wetland Restoration	Caroline	22,965.50	Design/Planni	ng		21.33	2.7	0.06
FY17	Delmarva RC & D Council	Street Floodplain reconnection	Stream Restoration	Caroline	7,219.50	Design/Planni	ng		30.48	3.8	0.08
	(1) Maryland DNR provided this da	ata 11/30/17 and indicated it is the full extent availabl	TOTALS	329,919.00				51.8	6.5	0.14	

Maryland 319 NPS Program SFY17 Annual Report Appendix J Upper Choptank River Page 6 of 7

Appendix J Upper Choptank River Page 6 of 7												Prior Years' Progress Toward Watershed Plan Goals						
SFY2017 Agricultural BMP Im	pleme	ntation				Linner Chanter I. Di		2003-2013	Extracted	d from St	ate Data	reported						
Upper Choptank River Waters	shed					Opper Choptank Riv	2013 Annual	by MDE to EPA Bay Program										
In Caroline County, Maryland			Estimated F	Pollutant Load	d Reduction	Agricultural BMP Im	Report	SFY14	SFY15	SFY16	Units							
Agricultural Best Management Practice	Unit	SFY2017 Total	Total Nitrogen (Ibs)	Total Phosphorus (lbs)	Total Sediment (tons)	Management Practice Watershed Plan Table 4	Goal	Progress 2003 thru Units SFY2017										
Annual Practices																		
Cover Crops	acres	42,396	149,326.1	0.1	71.63	Cover Crops	50,000	acres/yr	10.000									
	40.00					Commodity Cover Crops	15,000	acres/yr	42,396									
Multi-Year Practices																		
Alternative Crops	acres	0							0		0	0	0	acres				
Amendments for Treatment of Ag Waste	AU	0							1,000		180	0	820	AU				
Animal Mortality Facility	count	6	23.9	2.3	0				10		0	0	4	count				
Conservation Cover	acres	12.3	92.6	0.5	0.24				52		0	0	39.9	acres				
Conservation Plans/SCWQP	acres	8,789	5,184.9	0.1	52.70	Soil Conservation WQ Plans	66,000	acres	41,999	4,699.9	8,401	8792	11317	acres				
Critical Area Planting	acres	0							5		0.3	3.95	0.3	acres				
Dead Bird Composting Facility	count	0							7		5	2	0	count				
Fencing	feet	0				Stream protection with fencing	130	acres	0	0 acres	0	0	0	feet				
Field Border	acres	10.3	90.6	2.1	0.40				12.4		0.5	1.61	0	acres				
Filter Strip	acres	0							0		0	0	0	acres				
Grassed Waterway	acres	0							1.2		1.2	0	0	acres				
Horse Pasture Management	acres	0							19		0	0	19.1	acres				
Loafing Lot Management System	acres	1.41	978.5	166.4	0.01				4.7		1.6	1.56	0.1	acres				
Pasture & Hay Planting	acres	7.4	55.7	0.5	0.15				7		0	0	0	acres				
Prescribed Grazing	acres	55	0	0	0.03				88		0	0	33.2	acres				
P-sorbing Materials	acres	0							0		0	0	0	acres				
Riparian Forest Buffer	acres	0				Buffers Forested - Agriculture	1,000	acres	0	0	0	0	0	acres				
Riparian Herbaceous Cover	acres	16.17	261.6	13.9	0.80	Buffers Grassed - Agriculture	5,500	acres	105.9	64.2	14.1	9.06	2.33	acres				
Roof Runoff Structure	count	0				Runoff Control	8	count	4	2	1	0	1	count				
Stream Restoration Ag	feet	0							1,045		0	995	50	feet				
Tree/Shrub Establishment	acres	23.6	0.0	0.0	0.01	Tree Planting - Agriculture	100	acres	119	0	0	0	95.7	acres				
Waste Storage Facility	count	10	4,744.5	676.8	0	Animal Waste Mgmt - Livestock	2	count	27	1	4	3	4	count				
						Animal Waste Mgmt - Poultry	4	Count	57	15								
Wastewater Treatment Strip	acres	0									0	0	0	acres				
Water Control Structure	count	4	19.4	0	0	Drainage Control Structures	65	count	11	no report	1	5	1	count				
Watering Facility	count	0									0	0	0	count				
Wetland Creation	acres	0				Wetland - Agriculture	1 200	acres	262.4	12.1	1.5	0	0	acres				
Wetland Restoration	acres	52.6	0	26.8	0.34		1,200	461 63	202.4		0	1.9	194.3	acres				
Windbreak/Shelterbelt Establishment	feet	0							2,206		0	2206	0	feet				
						Conservation Tillage	20,000	acres/yr	0									
						Nutrient Management	48,000	acres	0									
						Precision Agriculture	25,000	acres	0									
						Retirement of Highly Erodible Land	500	acres										
						Stream protection with no fencing	32	acres										
Total Annual Practices (2)			149,326.1	0.1	71.6													
Total Multi-year Practices			11.451.8	889.3	54.7													
Total Pollutant Load Poduction			160 777 0	200.4	126.2													
TOTAL POINTAIL FOAT VENUELION			100,777.9	009.4	120.3													

(1) "SFY17 Total" column is Maryland Dept. of Agriculture 1/22/18 data.

(2) Annual Practices: cover crops, nutrient mgmt, manure transport, conservation tillage & high residue tillage.

Maryland 319 NPS Program SFY17 Annual Report Appendix J Upper Choptank River Page 7 of 7

Appendix J Upper Choptank River Page 7	7 of 7										Prior Years	' Progre	ss Toward	d Watersh	ned Plan	
SFY2017 U	rban BN	IP Implem	entation			Upper Choptank River Watershed Plan						Ev+	Goals	m State (Data	
Upper Ch	optank	River Wat	ershed					1. 15.	reported by MDE to EPA Bay							
In Caro	line Cou	unty, Mary	land				Urban BMP Impleme		Local Data 2003-2013 in	Program						
		DMDa	Estimate	d Pollutant Loa	d Reduction					Progress	2013 Annual		i i ogidini			
Management Practice	Unit	Reported	Nitrogen Ib/yr	Phosphorus lb/yr	Sediment tons/yr		Management Practice		Units	SFY14 thru SFY17	Report	SFY14	SFY15	SFY16	Units	
Bioretention (1)	acres	0							acres	0		0	0	0	acres	
Cisterns and Rain Barrels (1)	acres	0							acres	0		0	0	0	acres	
Bioswale (1)	acres	0							acres	0		0	0	0	acres	
Disconnection of Rooftop Runoff (1)	acres	0							acres	0		0	0	0	acres	
Dry Detention Ponds & Hydro Structures (1)	acres	0							acres	0		0	0	0	acres	
Dry Extended Detention Ponds (1)	acres	0							acres	0		0	0	0	acres	
Dry Well (1)	acres	0							acres	0		0	0	0	acres	
Filtering Practices (1)	acres	0							acres	0		0	0	0	acres	
Forest Conservation	acres	0)						acres	0		0	0	0	acres	
Forest Harvesting Practices	acres	0)						acres	0		0	0	0	acres	
Infiltration Practices (1)	acres	0							acres	0		0	0	0	acres	
Permeable Pavement (1)	acres	0							acres	0.5		0	0.5	0	acres	
Rain Garden (1)	acres	0							acres	0		0	0	0	acres	
Reduction of Impervious Surface (1)	acres	0							acres	0		0	0	0	acres	
Riparian Forest Buffers on Urban Lands (2)	acres	0							acres	0		0	0	0	acres	
Septics Connections to Sewers	count	0				Table 6	Septic Connections to WWTP	750	count	0	no report	0	0	0	count	
Septic Denitrification critical area	count	6	58.80								no report	15	7	12	count	
Septic Denitrification outside of 1000 feet	count	11	37.40			Table 6	Enhanced Septic Denitrification	5,051	count	125	no report	8	14	21	count	
Septic Denitrification within 1000 feet	count	1	5.50								no report	21	5	4	count	
Septic Tank Pumpout	count	0							count	0		0	0	0	count	
Stream Restoration Urban	feet	0							feet	0		0	0	0	feet	
Street Sweeping (1)	acres	0)						acres	0		0	0	0	acres	
Tree Planting	acres	0							acres	0		0	0	0	acres	
Urban Forest Buffer (2)	acres	0							acres	0		0	0	0	acres	
Wet Extended Detention (1)	acres	0							acres	0		0	0	0	acres	
Wet Ponds & Wetlands (1)	acres	0							acres	0		0	0	0	acres	
						Table 5	Buffers Forested, Urban (2)	60	acres	0	0					
						Table 5	Erosion and Sediment Control	895	acres/yr							
						Table 5	Nutrient Management, Urban	12,000	acres	0	0					
						Table 5	Stormwater Management (1)	8,400	acres	7.4	6.9					
	Lirban P		101 70	0.00		(1) Woto	whod plan goal "stormwater managem	ont" occross		a for BMDo for	otrotod (1)		-			
(2) "RMPs Papartad" solume is MDF data 4/2	5/2010 M				u U		wheel plan goal "huffers faracted with	en ayyreya		for DMDs fact						
3) "BMPS Reported" column is MDE data 1/25/2018. MDE used MAST to estimate pollutant reduction.					(Z) wate	sheu plan goar bullers lorested, urbal	n ayyreyates	sieporung	IUI DIVIPS 1000	ioieu (z).						