Annual Drinking Water Quality Report MD0030023 GRAMERCY LLC (AKA KOINONIA PARTNERSHIP) Annual Water Quality Report for the period of January 1 to December 31, 2021 This report is intended to provide you with important information about your drinking water and the efforts made by the water system to provide safe drinking water. Este informe contiene información muy importante sobre el agua que usad beba. Tradúzcajo ó hable con alguien que lo entienda bien. GRAMERCY LLC (AKA KOINONIA PARTNERSHIP) IS Ground Water ## Sources of Drinking Water The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of prinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily Indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPAs Safe Drinking Water Hotline at (800) 426-4791. Contaminants that may be present in source water include: - Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife. - inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming. - Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses. - Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems, Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities. In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health. Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (800-426-4791). If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. We are responsible for providing high quality drinking water, but we cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead seconds to a minutes before using water for unixing of cooking, if you are concerned about lead in your water, you may wait to have your water tested, information of read in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead. Source Water Information | KOINONIA 1, ORCHARD WELL BASIOLOS | 8AB16633
8A038992 | Type of Water
GW | | Location NEAR 1.6 MI NE OF STEVENSON APPROX. 80 FT W OF 11076 GREENSPRING AV BROOKLANDVILLE | |-----------------------------------|----------------------|---------------------|--|---| |-----------------------------------|----------------------|---------------------|--|---| ### Regulated Contaminants Detected 2021 ## Lead and Copper Definitions: Action Lavel Goal (ALG): The level of a contaminant in drinking water below which there is no known or expected risk to health. ALGs allow for a margin of safety. Action Lavel Goal (ALG): The level of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow. | tion Level: The concen | The lavel of a contaminant li
Itration of a contaminant wh | | | | 7 C. S. | Units | Lead and Copper | Likely Source of Contamination | |------------------------------|---|-------------------|-------------------|---|---|--------|---|--------------------------------| | Lead and Copper Date Sampled | MCLG | Action Level (AL) | AU(U Let Catterie | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | | | | | | | | 1 | | ppm | Сорраг | Erosion of natural deposits; Leaching from wood
preservatives; Corrosion of household plumbing | | | Copper 2021 | 2021 | 1.3 | 1.9 | 0.624 | " | 1 | | systems. | | | | | | | ppb | Lead | Corrosion of household plumbing systems; Eros | | | | 2021 | 0 | 15 | 4 | 0 | ppu | | of natural deposits. | |
mility To | st Results | |---------------|------------| Definitions: The following tables contain scientific terms and measures, some of which may require explanation. Lovel 1 Assessment Level 2 Assessment: Regulatory compliance with some MCLs are based on running annual average of monthly samples. Maximum Contaminant Level or MCL: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best svallable treatment technology. A Level 1 pessessment is a study of the water system to identify potential problems and determine (if possible) why total collerm bacteria have been found in our Maximum Contaminant Level Goal or MCLG: The level of a contaminant in difficing water below which there is no known or expected risk to health. MCLSs allow for a margin of safety. A Lavel 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coll MCL violation has occurred and/or why total collform bacteria have been found in our water system on multiple occasions. Maximum residual disinfectant level or MROL: The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial Meximum residual disinfectant level goal or MADLG: The level of a drinking water disinfectant helow which there is no known or expected risk to health. MROLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants. not applicable- ABS millitems per year (a measure of radiation absorbed by the body) Water Quality Test Results ppb: micrograms per liter or parts per billion - or one ounce in 7,350,000 gallons of water. ____ milligrams per liter or parts per million - or one ounce in 7,350 gallons of water. Yreatment Technique or TT: A required process intended to reduce the level of a contaminant in drinking water. A source water assessment has been performed by the Maryland Department of the Environment and is accessible on their website at: https://mde.maryland.gov/programs/Water/water-supply/Source-Water-Assessment-Program/Pages/by-county.aspx 06/16/2022 - MP0030023_2021_2022-06-16_10-58-03.RTF 7 of | | | | | | MCL | Units | Violation | Likely Source of Contamination | |--|-----------------|---------------|-----------------------------|-------------|-----------|-----------|--|--| | gulated Contaminants | Collection Date | Highest Lovel | Range of Levels Detected | MCLG | MICE | | | | | norganic Contaminants Collection Date | Detected | Deletter | | | ppm | N | Discharge of drilling wastes; Olscharge from metal | | | Berlum 12/09/2020 | 12/09/2020 | 0,018 | 0,018 - 0.018 | 2 | 2 | PP | | refineties; Erosion of natural deposits. | | | | | | | Unité | Violation | Likely Source of Contamination | | | Radioactive Contaminants Collection Da | Collection Date | Highest Level | Range of Levels
Detected | MCFR | MCL
50 | pCi/L | | | | | Da | Datected | | | | | N | Decay of natural and man-made deposits. | | Beta/photon emitters | 07/27/2016 4.9 | 4.9 | 4.3 - 4.9 | 0 | 20 | pCl/L | N | Erosion of natural deposits. | | | | | | | + | | | | | Combined Radium 226/238 | 09/11/2019 | D.6 | 0,6 - 0.6 | 0 | 5 | 1 | | | | | 05/11/2015 | | | | | | | | PFAS – short for per- and polyfluoroalkyl substances – refers to a large group of more than 4,000 human-made chemicals that have been used since the 1940s in a range of products, including stain- and water-resistant fabrics and carpeting, cleaning products, paints, cookware, food packaging and fire-fighting foams. These uses of PFAS have led to PFAS entering our environment, where they have been measured by several states in soil, surface water, groundwater and seafood. Some PFAS can last a long time in the environment and in the human body and can accumulate in the food chain. Currently, there are no federal regulations (i.e., Maximum Contaminant Levels (MCLs)) for PFAS in drinking water. However, the U.S. Environmental Protection Agency (EPA) has issued a Health Advisory Level (HAL) of 70 parts per trillion (ppt) for the sum of PFOA and PFOS concentrations in drinking water. While not an enforceable regulatory standard, when followed, the EPA HAL does provide drinking water customers, even the most sensitive populations, with a margin of protection from lifetime exposure to PFOA and PFOS in drinking water. Beginning in 2020, the Maryland Department of the Environment (MDE) initiated a PFAS monitoring program. The combined PFOA and PFAS concentration from samples taken from our water system was below the detection limit. MDE anticipates that EPA will establish an MCL for PFOA and PFOS in the near future. This would entail additional monitoring. Additional Information about PFAS can be found on the MDE website: mde.maryland.gov of - MD0030023_2021_2022-06-16_10-58-03.RTF 06/16/2022 | Violations Table | - | | | |---|---|--|--| | Fluoride | | | | | Some people who drink water containing fluoric
of childrens teath, usually in children less than n | le in excess of the MCL over
tine years old. Motiling, a | meny years could ge
so known as dental fl | t bone disease, including pain and tenderness of the bones, Fluoride (n drinking water at half the MCL or more may cause mothing
uorosis, may include brown staining and/or pitting of leeth, and occurs only in developing teeth | | Violation Type | Violation Begin | Vielation End | Violetion Explenation | | MONITORING, ROUTINE MAJOR | 01/01/2019 | 12/91/2021 | We falled to test our drinking water for the contaminant and period indicated. Because of this failure, we cannot be sure of the quality of our drinking water during the period indicated. | | Lead and Copper Rule | | | | | The Lead and Copper Rule protects public healt containing plumbing materials. | h by minimizing lead and co | opper løvels in drinkin | g water, primarily by reducing water corresivity. Lead and copper enter drinking water mainly from corresion of lead and copper | | Violation Type | Violation Begin | Violation End | Violetion Explanation | | FOLLOW-UP OR ROUTINE TAP M/R (LCR) | 10/01/2021 | 10/20/2021 | We falled to test our drinking water for the contaminant and period indicated. Recause of this failure, we cannot be sure of the quality of our drinking water during the period indicated. |